On the transference principle and Nesterenko's linear independence criterion

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the problem of simultaneous approximation of real numbers $\theta_1,…,\theta_n$ by rationals and the dual problem of approximating zero by the values of the linear form $x_0+\theta_1x_1+…+\theta_nx_n$ atinteger points. In this setting we analyse two transference inequalitiesobtained by Schmidt and Summerer. We present a rather simple geometricobservation which proves their result. We also derive several previously unknown corollaries. In particular, we show that, together with German'sinequalities for uniform exponents, Schmidt and Summerer's inequalities implythe inequalities by Bugeaud and Laurent and “one half” of the inequalitiesby Marnat and Moshchevitin. Moreover, we show that our main constructionprovides a rather simple proof of Nesterenko's linear independencecriterion.

Авторлар туралы

Oleg German

HSE University; Moscow Center for Fundamental and Applied Mathematics

Email: german.oleg@gmail.com
Doctor of physico-mathematical sciences, no status

Nikolai Moshchevitin

HSE University; Moscow Center for Fundamental and Applied Mathematics

Email: moshchevitin@rambler.ru
Doctor of physico-mathematical sciences, Professor

Әдебиет тізімі

  1. Ю. В. Нестеренко, “О линейной независимости чисел”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1985, № 1, 46–49
  2. A. Khintchine, “Über eine Klasse linearer Diophantischer Approximationen”, Rend. Circ. Mat. Palermo, 50 (1926), 170–195
  3. V. Jarnik, “Zum Khintchineschen “Übertragungssatz””, Trav. Inst. Math. Tbilissi, 3 (1938), 193–216
  4. Y. Bugeaud, M. Laurent, “Exponents of Diophantine approximation”, Diophantine geometry, CRM Series, 4, Ed. Norm., Pisa, 2007, 101–121
  5. Y. Bugeaud, M. Laurent, “On transfer inequalities in Diophantine approximation. II”, Math. Z., 265:2 (2010), 249–262
  6. O. N. German, “Intermediate Diophantine exponents and parametric geometry of numbers”, Acta Arith., 154:1 (2012), 79–101
  7. O. N. German, “On Diophantine exponents and Khintchine's transference principle”, Mosc. J. Comb. Number Theory, 2:2 (2012), 22–51
  8. W. M. Schmidt, L. Summerer, “Diophantine approximation and parametric geometry of numbers”, Monatsh. Math., 169:1 (2013), 51–104
  9. O. N. German, N. G. Moshchevitin, “A simple proof of Schmidt–Summerer's inequality”, Monatsh. Math., 170:3-4 (2013), 361–370
  10. V. Jarnik, “Une remarque sur les approximations diophantiennes lineaires”, Acta Sci. Math. (Szeged), 12 B (1950), 82–86
  11. V. Jarnik, “Contribution à la theorie des approximations diophantiennes lineaires et homogènes”, Czechoslovak Math. J., 4:79 (1954), 330–353
  12. A. Marnat, N. G. Moshchevitin, “An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation”, Mathematika, 66:3 (2020), 818–854
  13. Ngoc Ai Van Nguyen, A. Poëls, D. Roy, “A transference principle for simultaneous rational approximation”, J. Theor. Nombres Bordeaux, 32:2 (2020), 387–402
  14. J. Schleischitz, “On geometry of numbers and uniform rational approximation to the Veronese curve”, Period. Math. Hung., 83:2 (2021), 233–249
  15. J. Schleischitz, “Optimality of two inequalities for exponents of Diophantine approximation”, J. Number Theory, 244 (2023), 169–203
  16. D. Kleinbock, N. Moshchevitin, B. Weiss, “Singular vectors on manifolds and fractals”, Israel J. Math., 245:2 (2021), 589–613
  17. S. Fischler, W. Zudilin, “A refinement of Nesterenko's linear independence criterion with applications to zeta values”, Math. Ann., 347:4 (2010), 739–763
  18. A. Chantanasiri, “On the criteria for linear independence of Nesterenko, Fischler and Zudilin”, Chamchuri J. Math., 2:1 (2010), 31–46
  19. S. Fischler, T. Rivoal, “Irrationality exponent and rational approximations with prescribed growth”, Proc. Amer. Math. Soc., 138:3 (2010), 799–808

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© German O.N., Moshchevitin N.G., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).