Экстремальная интерполяция с наименьшим значением нормы второй производной в пространстве $L_p(\mathbb R)$

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе в терминах разделенных разностей формулируется общая задача экстремальной функциональной интерполяции действительных функций одного переменного (для конечных разностей это задача Яненко–Стечкина–Субботина). Требуется вычислить наименьшее значение $n$-й производной в пространстве $L_p(\mathbb R)$, $1\le p\le \infty$, на классе функций, интерполирующих любую заданную бесконечную последовательность действительных чисел на произвольной, бесконечной в обе стороны сетке узлов на числовой оси $\mathbb R$ для класса интерполируемых последовательностей, у которых последовательность разделенных разностей $n$-го порядка принадлежит пространству $l_p(\mathbb Z)$. В настоящей работе эта задача решается в случае $n=2$. Указанная величина оценивается сверху и снизу через наибольший и наименьший шаги сетки узлов.Библиография: 12 наименований.

Об авторах

Валерий Трифонович Шевалдин

Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН

Email: Valerii.Shevaldin@imm.uran.ru
доктор физико-математических наук, старший научный сотрудник

Список литературы

  1. А. О. Гельфонд, Исчисление конечных разностей, 3-е изд., Наука, М., 1967, 375 с.
  2. С. Б. Стечкин, Ю. Н. Субботин, Сплайны в вычислительной математике, Наука, М., 1976, 248 с.
  3. J. Favard, “Sur l'interpolation”, J. Math. Pures Appl. (9), 19:9 (1940), 281–306
  4. В. С. Рябенький, “Необходимые и достаточные условия хорошей обусловленности краевых задач для систем обыкновенных разностных уравнений”, Ж. вычисл. матем. и матем. физ., 4:2 (1964), 242–255
  5. В. С. Рябенький, А. Ф. Филиппов, Об устойчивости разностных уравнений, Гостехиздат, М., 1956, 171 с.
  6. С. Л. Соболев, Лекции по теории кубатурных формул, Ч. 2, Изд-во Новосибирского ун-та, Новосибирск, 1965, 293 с.
  7. Ю. Н. Субботин, “О связи между конечными разностями и соответствующими производными”, Экстремальные свойства полиномов, Сборник работ, Тр. МИАН СССР, 78, Наука, М., 1965, 24–42
  8. Ю. Н. Субботин, “Функциональная интерполяция в среднем с наименьшей $n$-й производной”, Приближение функций в среднем, Сборник работ, Тр. МИАН СССР, 88, 1967, 30–60
  9. Ю. Н. Субботин, “Экстремальные задачи функциональной интерполяции и интерполяционные в среднем сплайны”, Тр. МИАН СССР, 138 (1975), 118–173
  10. Ю. Н. Субботин, С. И. Новиков, В. Т. Шевалдин, “Экстремальная функциональная интерполяция и сплайны”, Тр. ИММ УрО РАН, 24, № 3, 2018, 200–225
  11. Th. Kunkle, “Favard's interpolation problem in one or more variables”, Constr. Approx., 18:4 (2002), 467–478
  12. С. И. Новиков, В. Т. Шевалдин, “О связи между второй разделенной разностью и второй производной”, Тр. ИММ УрО РАН, 26, № 2, 2020, 216–224

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Шевалдин В.Т., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).