Perverse sheaves on smooth toric varieties and stacks

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is usually not straightforward to work with the category of
perverse sheaves on a variety using only its definition as a heart
of a $t$-structure. In this paper, the category of perverse sheaves
on a smooth toric variety with its orbit stratification is described
explicitly as a category of finite-dimensional modules over an
algebra. An analogous result is also established for various
categories of equivariant perverse sheaves, which in particular
gives a description of perverse sheaves on toric orbifolds, and we
also compare the derived category of the category of perverse
sheaves to the derived category of constructible sheaves.

About the authors

Sergey Vladimirovich Guminov

Centre of Pure MathematicsMIPT; National Research University Higher School of Economics, Moscow

Email: sergey.guminov@gmail.com
ORCID iD: 0000-0003-0009-0344
ResearcherId: U-2980-2019
without scientific degree, no status

References

  1. R. MacPherson, K. Vilonen, “Elementary construction of perverse sheaves”, Invent. Math., 84:2 (1986), 403–435
  2. S. Gelfand, R. MacPherson, K. Vilonen, Microlocal perverse sheaves
  3. A. A. Beilinson, “How to glue perverse sheaves”, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 42–51
  4. M. Kapranov, V. Schechtman, “Perverse sheaves over real hyperplane arrangements”, Ann. of Math. (2), 183:2 (2016), 619–679
  5. T. Braden, M. Grinberg, “Perverse sheaves on rank stratifications”, Duke Math. J., 96:2 (1999), 317–362
  6. T. Braden, “Perverse sheaves on Grassmannians”, Canad. J. Math., 54:3 (2002), 493–532
  7. A. Galligo, M. Granger, P. Maisonobe, “$mathscr{D}$-modules et faisceaux pervers dont le support singulier est un croisement normal”, Ann. Inst. Fourier (Grenoble), 35:1 (1985), 1–48
  8. D. Dupont, Exemples de classification du champ des faisceaux pervers, Ph.D. Thesis, Univ. Nice, 2008, vii+116 pp.
  9. A. Bondal, T. Logvinenko, Perverse schobers and orbifolds, Preprint
  10. A. A. Beilinson, “On the derived category of perverse sheaves”, K-Theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer-Verlag, Berlin, 1987, 27–41
  11. A. Beilinson, J. Bernstein, P. Deligne, O. Gabber, Faisceaux pervers, Asterisque, 100, 2nd ed., Soc. Math. France, Paris, 2018, vi+180 pp.
  12. P. N. Achar, Perverse sheaves and applications to representation theory, Math. Surveys Monogr., 258, Amer. Math. Soc., Providence, RI, 2021, xii+562 pp.
  13. J.-L. Verdier, “Prolongement des faisceaux pervers monodromiques”, Systèmes differentiels et singularites (Luminy, 1983), Asterisque, 130, Soc. Math. France, Paris, 1985, 210–217
  14. B. Gammage, M. McBreen, B. Webster, Homological mirror symmetry for hypertoric varieties II
  15. G. Janelidze, W. Tholen, “Facets of descent. I”, Appl. Categ. Structures, 2:3 (1994), 245–281
  16. B. Kahn, “On the Benabou–Roubaud theorem”, Cah. Topol. Geom. Differ. Categ., 66:2 (2025), 3–18
  17. V. V. Lyubashenko, “Exterior tensor product of perverse sheaves”, Ukrainian Math. J., 53:3 (2001), 354–367
  18. I. L. Franco, “Tensor products of finitely cocomplete and abelian categories”, J. Algebra, 396 (2013), 207–219
  19. M. Kashiwara, P. Schapira, Sheaves on manifolds. With a short history “Les debuts de la theorie des faisceaux” by Christian Houzel, Grundlehren Math. Wiss., 292, 2nd reprint, Springer-Verlag, Berlin, 2002, x+512 pp.
  20. L. A. Borisov, L. Chen, G. G. Smith, “The orbifold Chow ring of toric Deligne–Mumford stacks”, J. Amer. Math. Soc., 18:1 (2005), 193–215

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Guminov S.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).