Characterization of boundedness of some commutators of fractional maximal functions in terms of $p$-adic vector spaces

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper gives some characterizations of the boundedness of the maximal or non-linear commutator of the $p$-adic fractional maximal operator $ \mathcal{M}_{\alpha}^p$ with the symbols belong to the $p$-adic BMO spaces on (variable) Lebesgue spaces and Morrey spaces over $p$-adic field, by which some new characterizations of BMO functions are obtained in the $p$-adic field context. Meanwhile, some equivalent relations between the $p$-adic BMO norm and the $p$-adic (variable) Lebesgue or Morrey norm are given.

Sobre autores

JiangLong Wu

Department of Mathematics, Chizhou University, Chizhou, P. R. China

Email: wujl@czu.edu.cn
PhD, Professor

Yunpeng Chang

Department of Mathematics, Mudanjiang Normal University, Mudanjiang, P. R. China

Email: yunpeng_chang2023@163.com

Bibliografia

  1. M. Agcayazi, A. Gogatishvili, K. Koca, R. Mustafayev, “A note on maximal commutators and commutators of/ maximal functions”, J. Math. Soc. Japan, 67:2 (2015), 581–593
  2. S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, “Harmonic analysis in the $p$-adic Lizorkin spaces: fractional operators, pseudo-differential equations, $p$-adic wavelets, Tauberian theorems”, J. Fourier Anal. Appl., 12:4 (2006), 393–425
  3. J. Bastero, M. Milman, F. J. Ruiz, “Commutators for the maximal and sharp functions”, Proc. Amer. Math. Soc., 128:11 (2000), 3329–3334
  4. A. Bernardis, S. Hartzstein, G. Pradolini, “Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type”, J. Math. Anal. Appl., 322:2 (2006), 825–846
  5. A. L. Bernardis, G. Pradolini, M. Lorente, M. S. Riveros, “Composition of fractional Orlicz maximal operators and $A_1$-weights on spaces of homogeneous type”, Acta Math. Sin. (Engl. Ser.), 26:8 (2010), 1509–1518
  6. M. Bramanti, M. C. Cerutti, “Commutators of singular integrals and fractional integrals on homogeneous spaces”, Harmonic analysis and operator theory (Caracas, 1994), Contemp. Math., 189, Amer. Math. Soc., Providence, RI, 1995, 81–94
  7. L. F. Chacon-Cortes, H. Rafeiro, “Variable exponent Lebesgue spaces and Hardy–Littlewood maximal function on $p$-adic numbers”, $p$-Adic Numbers Ultrametric Anal. Appl., 12:2 (2020), 90–111
  8. L. F. Chacon-Cortes, H. Rafeiro, “Fractional operators in $p$-adic variable exponent Lebesgue spaces and application to $p$-adic derivative”, J. Funct. Spaces, 2021 (2021), 3096701, 9 pp.
  9. F. Chiarenza, M. Frasca, P. Longo, “$W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients”, Trans. Amer. Math. Soc., 336:2 (1993), 841–853
  10. R. R. Coifman, R. Rochberg, G. Weiss, “Factorization theorems for Hardy spaces in several variables”, Ann. of Math. (2), 103:3 (1976), 611–635
  11. D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Perez, “The boundedness of classical operators on variable $L^p$ spaces”, Ann. Acad. Sci. Fenn. Math., 31:1 (2006), 239–264
  12. G. Di Fazio, M. A. Ragusa, “Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients”, J. Funct. Anal., 112:2 (1993), 241–256
  13. V. S. Guliyev, “Commutators of the fractional maximal function in generalized Morrey spaces on Carnot groups”, Complex Var. Elliptic Equ., 66:6-7 (2021), 893–909
  14. Qianjun He, Xiang Li, “Characterization of Lipschitz spaces via commutators of maximal function on the $p$-adic vector space”, J. Math., 2022 (2022), 7430272, 15 pp.
  15. Qianjun He, Xiang Li, “Necessary and sufficient conditions for boundedness of commutators of maximal function on the $p$-adic vector spaces”, AIMS Math., 8:6 (2023), 14064–14085
  16. S. Janson, “Mean oscillation and commutators of singular integral operators”, Ark. Mat., 16:1-2 (1978), 263–270
  17. F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14:3 (1961), 415–426
  18. A. Yu. Khrennikov, V. M. Shelkovich, “Non-Haar $p$-adic wavelets and their application to pseudo-differential operators and equations”, Appl. Comput. Harmon. Anal., 28:1 (2010), 1–23
  19. Yong-Cheol Kim, “Carleson measures and the BMO space on the $p$-adic vector space”, Math. Nachr., 282:9 (2009), 1278–1304
  20. Yong-Cheol Kim, “$L^q$-estimates of maximal operators on the $p$-adic vector space”, Commun. Korean Math. Soc., 24:3 (2009), 367–379
  21. A. K. Lerner, S. Ombrosi, C. Perez, R. H. Torres, R. Trujillo-Gonzalez, “New maximal functions and multiple weights for the multilinear Calderon–Zygmund theory”, Adv. Math., 220:4 (2009), 1222–1264
  22. Guozhen Lu, Pu Zhang, “Multilinear Calderon–Zygmund operators with kernels of Dini's type and applications”, Nonlinear Anal., 107 (2014), 92–117
  23. C. B. Morrey, Jr., “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166
  24. M. Paluszynski, “Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss”, Indiana Univ. Math. J., 44:1 (1995), 1–17
  25. M. A. Ragusa, “Cauchy–Dirichlet problem associated to divergence form parabolic equations”, Commun. Contemp. Math., 6:3 (2004), 377–393
  26. M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, Inc., New York, 1991, xii+449 pp.
  27. V. Shelkovich, M. Skopina, “$p$-adic Haar multiresolution analysis and pseudo-differential operators”, J. Fourier Anal. Appl., 15:3 (2009), 366–393
  28. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp.
  29. M. H. Taibleson, Fourier analysis on local fields, Math. Notes, 15, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1975, xii+294 pp.
  30. A. Torresblanca-Badillo, A. A. Albarracin-Mantilla, “Some further classes of pseudo-differential operators in the $p$-adic context and their applications”, J. Pseudo-Differ. Oper. Appl., 14:2 (2023), 24, 23 pp.
  31. Jianglong Wu, Yunpeng Chang, “Characterization of Lipschitz spaces via commutators of fractional maximal function on the $p$-adic variable exponent Lebesgue spaces”, C. R. Math. Acad. Sci. Paris, 362:1 (2024), 177–194
  32. Pu Zhang, Jianglong Wu, “Commutators of the fractional maximal functions”, (Chinese), Acta Math. Sinica (Chinese Ser.), 52:6 (2009), 1235–1238
  33. Pu Zhang, Jianglong Wu, “Commutators for the maximal functions on Lebesgue spaces with variable exponent”, Math. Inequal. Appl., 17:4 (2014), 1375–1386
  34. Pu Zhang, Jianglong Wu, “Commutators of the fractional maximal function on variable exponent Lebesgue spaces”, Czechoslovak Math. J., 64:1 (2014), 183–197

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Wu J., Chang Y., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).