On uniquely solvable Fokker–Planck–Kolmogorov equations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper we obtain broad sufficient conditions for the existence
of probability solutions to the Cauchy problem for
Fokker–Planck–Kolmogorov equations on the real line without using Lyapunov
functions. In the multidimensional case, we prove that if
the Fokker–Planck–Kolmogorov equation for an elliptic operator $L$has a probability solution $\sigma$, and the Cauchy problem for this
equation has a unique probability solution for every initial probability
distribution, then there exists a strongly continuous Markov operator semigroup
on the space $L^1(\sigma)$ with respect to which the measure $\sigma$is invariant and the generator of which extends the operator $L$.
We give an answer to the long-standing question about existence of
a sub-Markov semigroup different from the canonical semigroup with
the generator extending $L$.

About the authors

Vladimir Igorevich Bogachev

Lomonosov Moscow State University; National Research University Higher School of Economics, Moscow

Email: vibogach@mail.ru
ORCID iD: 0000-0001-5249-2965
Scopus Author ID: 7005751293
ResearcherId: P-6316-2016
Doctor of physico-mathematical sciences, Professor

Stanislav Valer'evich Shaposhnikov

Lomonosov Moscow State University; National Research University Higher School of Economics, Moscow

Email: starticle@mail.ru
ORCID iD: 0000-0002-3281-7061

References

  1. E. B. Fabes, C. E. Kenig, “Examples of singular parabolic measures and singular transition probability densities”, Duke Math. J., 48:4 (1981), 845–856
  2. G. Metafune, D. Pallara, M. Wacker, “Feller semigroups on $mathbf R^N$”, Semigroup Forum, 65:2 (2002), 159–205
  3. W. Stannat, “(Nonsymmetric) Dirichlet operators on $L^1$: existence, uniqueness and associated Markov processes”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:1 (1999), 99–140
  4. A. Eberle, Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators, Lecture Notes in Math., 1718, Springer-Verlag, Berlin, 1999, viii+262 pp.
  5. Haesung Lee, W. Stannat, G. Trutnau, Analytic theory of Itô-stochastic differential equations with non-smooth coefficients, SpringerBriefs Probab. Math. Stat., Springer, Singapore, 2022, xv+126 pp.
  6. S. Sawyer, “A Fatou theorem for the general one-dimensional parabolic equation”, Indiana Univ. Math. J., 24:5 (1974/75), 451–498
  7. V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic regularity and essential self-adjointness of Dirichlet operators on $mathbf R^n$”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24:3 (1997), 451–461
  8. S. Albeverio, V. I. Bogachev, M. Röckner, “Markov uniqueness and Fokker–Planck–Kolmogorov equations”, Dirichlet forms and related topics, Springer Proc. Math. Stat., 394, Springer, Singapore, 2022, 1–21
  9. G. M. Lieberman, Second order parabolic differential equations, World Sci. Publ., River Edge, NJ, 1996, xii+439 pp.
  10. V. I. Bogachev, I. I. Malofeev, S. V. Shaposhnikov, “On dependence of solutions to Fokker–Planck–Kolmogorov equations on their coefficients and initial data”, Math. Notes, 116:3 (2024), 421–431
  11. V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Zvonkin's transform and the regularity of solutions to double divergence form elliptic equations”, Comm. Partial Differential Equations, 48:1 (2023), 119–149

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bogachev V.I., Shaposhnikov S.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).