On Grothendieck–Serre conjecture in mixed characteristic for $\operatorname{SL}_{1,D}$

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $R$ be an unramified regular local ring of mixed characteristic, $D$ an Azumaya $R$-algebra, $K$ the fraction field of $R$, $\operatorname{Nrd}\colon D^{\times} \to R^{\times}$ the reduced norm homomorphism. Let $a \in R^{\times}$ be a unit. Suppose the equation $\operatorname{Nrd}=a$ has a solution over $K$, then it has a solution over $R$.Particularly, we prove the following. Let $R$ be as above and $a$, $b$, $c$ be units in $R$. Consider the equation $T^2_1-aT^2_2-bT^2_3+abT^2_4=c$. If it has a solution over $K$, then it has a solution over $R$.Similar results are proved for regular local rings, which are geometrically regular over a discrete valuation ring. These results extend result provedin [23] to the mixed characteristic case. 

About the authors

Ivan Alexandrovich Panin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: paniniv@gmail.com
Doctor of physico-mathematical sciences

References

  1. K. Česnavičius, “Grothendieck–Serre in the quasi-split unramified case”, Forum Math. Pi, 10 (2022), e9, 30 pp.
  2. J.-L. Colliot-Thelène, J.-J. Sansuc, “Principal homogeneous spaces under flasque tori: applications”, J. Algebra, 106:1 (1987), 148–205
  3. J.-L. Colliot-Thelène, M. Ojanguren, “Espaces principaux homogènes localement triviaux”, Inst. Hautes Etudes Sci. Publ. Math., 75 (1992), 97–122
  4. F. R. DeMeyer, “Projective modules over central separable algebras”, Canad. J. Math., 21 (1969), 39–43
  5. R. Fedorov, I. Panin, “A proof of the Grothendieck–Serre conjecture on principal bundles over regular local ring containing infinite fields”, Publ. Math. Inst. Hautes Etudes Sci., 122 (2015), 169–193
  6. R. Fedorov, “On the Grothendieck–Serre conjecture on principal bundles in mixed characteristic”, Trans. Amer. Math. Soc., 375:1 (2022), 559–586
  7. R. Fedorov, “On the Grothendieck–Serre conjecture about principal bundles and its generalizations”, Algebra Number Theory, 16:2 (2022), 447–465
  8. S. Gille, I. Panin, “On the Gersten conjecture for Hermitian Witt groups”, Math. Ann., 389:2 (2024), 1187–1224
  9. A. Grothendieck, “Torsion homologique et sections rationnelles”, Seminaire C. Chevalley, 2e annee, v. 3, Anneaux de Chow et applications, Secretariat mathematique, Paris, 1958, Exp. No. 5, 29 pp.
  10. A. Grothendieck, “Le groupe de Brauer. II. Theorie cohomologique”, Dix exposes sur la cohomologie de schemas, Adv. Stud. Pure Math., 3, North-Holland Publishing Co., Amsterdam, 1968, 67–87
  11. Ye. A. Nisnevich, “Espaces homogènes principaux rationnellement triviaux et arithmetique des schemas en groupe reductifs sur les anneaux de Dedekind”, C. R. Acad. Sci. Paris Ser. I Math., 299:1 (1984), 5–8
  12. Ye. Nisnevich, “Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes over extensions of two-dimensional local regular rings”, C. R. Acad. Sci. Paris Ser. I Math., 309:10 (1989), 651–655
  13. Ning Guo, “The Grothendieck–Serre conjecture over semilocal Dedekind rings”, Transform. Groups, 27:3 (2022), 897–917
  14. M. Ojanguren, I. Panin, “Rationally trivial Hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198
  15. I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes. I”, Compos. Math., 151:3 (2015), 535–567
  16. I. Panin, Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field, 2015
  17. И. А. Панин, “Доказательство гипотезы Гротендика–Серра о главных расслоениях над регулярным локальным кольцом, содержащим поле”, Изв. РАН. Сер. матем., 84:4 (2020), 169–186
  18. I. Panin, “On Grothendieck–Serre conjecture concerning principal bundles”, Proceedings of the international congress of mathematicians (ICM 2018) (Rio de Janeiro, 2018), v. 2, World Sci. Publ., Hackensack, NJ, 2018, 201–221
  19. И. А. Панин, “О расширенной форме гипотезы Гротендика–Серра”, Изв. РАН. Сер. матем., 86:4 (2022), 175–191
  20. И. А. Панин, “Две теоремы чистоты и гипотеза Гротендика–Серра о главных $mathbf G$-расслоениях”, Матем. сб., 211:12 (2020), 123–142
  21. I. Panin, Moving lemmas in mixed characteristic and applications
  22. I. A. Panin, A. K. Stavrova, “On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semilocal Dedekind domains”, Вопросы теории представлений алгебр и групп. 29, Зап. науч. сем. ПОМИ, 443, ПОМИ, СПб., 2016, 133–146
  23. И. А. Панин, А. А. Суслин, “Об одной гипотезе Гротендика, касающейся алгебр Адзумайа”, Алгебра и анализ, 9:4 (1997), 215–223
  24. D. Popescu, “General Neron desingularization and approximation”, Nagoya Math. J., 104 (1986), 85–115
  25. И. А. Панин, Д. Н. Тюрин, “Формы Пфистера и гипотеза Кольe-Телена для случая смешанной характеристики”, Изв. РАН. Сер. матем., 88:5 (2024), 174–186
  26. D. Quillen, “Higher algebraic K-theory. I”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA, 1972), v. I, Lecture Notes in Math., 341, Higher K-theories, Springer-Verlag, Berlin–New York, 1973, 85–147
  27. J. P. Serre, “Les espaces fibres algebriques”, Seminaire C. Chevalley, 2e annee, v. 3, Anneaux de Chow et applications, Secretariat mathematique, Paris, 1958, Exp. No. 1, 37 pp.
  28. R. G. Swan, “Neron–Popescu desingularization”, Algebra and geometry (Taipei, 1995), Lect. Algebra Geom., 2, Int. Press, Cambridge, MA, 1998, 135–192
  29. A. J. de Jong et al., The Stacks project

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Panin I.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).