Local analog of the Deligne–Riemann–Roch isomorphism for line bundles in relative dimension 1
- 作者: Osipov D.V.1
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- 期: 卷 88, 编号 5 (2024)
- 页面: 127-173
- 栏目: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/265539
- DOI: https://doi.org/10.4213/im9532
- ID: 265539
如何引用文章
详细
We prove a local analog of the Deligne–Riemann–Roch isomorphism in the case of line bundles and relative dimension $1$. This local analog consists in computation of the class of $12$th power of the determinant central extension of a group ind-scheme $\mathcal G$ by the multiplicative group scheme over $\mathbb Q$ via the product of $2$-cocyles in the second cohomology group. These $2$-cocycles are the compositions of the Contou-Carrère symbol with the $\cup$-product of $1$-cocycles. The group ind-scheme $\mathcal{G}$ represents the functor which assigns to every commutative ring $A$ the group that is the semidirect product of the group $A((t))^*$ of invertible elements of $A((t))$ and the group of continuous $A$-automorphisms of $A$-algebra $A((t))$. The determinant central extension naturally acts on the determinant line bundle on the moduli stack of geometric data (proper quintets). A proper quintet is a collection of a proper family of curves over $\operatorname{Spec} A$, a line bundle on this family, a section of this family, a relative formal parameter at the section, a formal trivialization of the bundle at the section that satisfy further conditions.
作者简介
Denis Osipov
Steklov Mathematical Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: d_osipov@mi-ras.ru
Scopus 作者 ID: 36873507400
Researcher ID: E-6785-2016
Doctor of physico-mathematical sciences, no status
参考
- E. Arbarello, M. Cornalba, Ph. A. Griffiths, Geometry of algebraic curves, With a contribution by J. D. Harris, v. II, Grundlehren Math. Wiss., 268, Springer, Heidelberg, 2011, xxx+963 pp.
- E. Arbarello, C. de Concini, V. G. Kac, C. Procesi, “Moduli spaces of curves and representation theory”, Comm. Math. Phys., 117:1 (1988), 1–36
- S. Boucksom, D. Eriksson, “Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry”, Adv. Math., 378 (2021), 107501, 124 pp.
- К. С. Браун, Когомологии групп, Наука, М., 1987, 384 с.
- J.-L. Brylinski, P. Deligne, “Central extensions of reductive groups by $K_2$”, Publ. Math. Inst. Hautes Etudes Sci., 94 (2001), 5–85
- C. Contou-Carrère, “Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modere”, C. R. Acad. Sci. Paris Ser. I Math., 318:8 (1994), 743–746
- C. Contou-Carrère, “Jacobienne locale d'une courbe formelle relative”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 1–106
- P. Deligne, “Le determinant de la cohomologie”, Current trends in arithmetical algebraic geometry (Arcata, CA, 1985), Contemp. Math., 67, Amer. Math. Soc., Providence, RI, 1987, 93–177
- P. Deligne, “Le symbole modere”, Publ. Math. Inst. Hautes Etudes Sci., 73 (1991), 147–181
- J. Dieudonne, Introduction to the theory of formal groups, Pure Appl. Math., 20, Marcel Dekker, Inc., New York, 1973, xii+265 pp.
- E. Frenkel, D. Ben-Zvi, Vertex algebras and algebraic curves, Math. Surveys Monogr., 88, 2nd ed., Amer. Math. Soc., Providence, RI, 2004, xiv+400 pp.
- С. О. Горчинский, Д. В. Осипов, “Многомерный символ Конту-Каррера и непрерывные автоморфизмы”, Функц. анализ и его прил., 50:4 (2016), 26–42
- A. Grothendieck, “Elements de geometrie algebrique. IV. Etude locale des schemas et des morphismes de schemas. III”, Publ. Math. Inst. Hautes Etudes Sci., 28 (1966), 1–255
- A. Grothendieck, “Elements de geometrie algebrique. IV. Etude locale des schemas et des morphismes de schemas. IV”, Publ. Math. Inst. Hautes Etudes Sci., 32 (1967), 1–361
- V. G. Kac, D. H. Peterson, “Spin and wedge representations of infinite-dimensional Lie algebras and groups”, Proc. Natl. Acad. Sci. USA, 78:6 (1981), 3308–3312
- R. Kiehl, “Ein “Descente”-Lemma und Grothendiecks Projektionssatz für nichtnoethersche Schemata”, Math. Ann., 198 (1972), 287–316
- Дж. Милнор, Введение в алгебраическую $K$-теорию, Мир, М., 1974, 200 с.
- Д. В. Осипов, “Соответствие Кричевера для алгебраических многообразий”, Изв. РАН. Сер. матем., 65:5 (2001), 91–128
- Д. В. Осипов, “Формальный коцикл Ботта–Тeрстона и часть формальной теоремы Римана–Роха”, Труды МИАН, 320, Алгебра, арифметическая, алгебраическая и комплексная геометрия (2023), 243–277
- Д. В. Осипов, “Детерминантное центральное расширение и $cup$-произведения $1$-коциклов”, УМН, 78:4(472) (2023), 207–208
- D. Osipov, Xinwen Zhu, “The two-dimensional Contou–Carrère symbol and reciprocity laws”, J. Algebraic Geom., 25:4 (2016), 703–774
- A. Polishchuk, Extended clutching construction for the moduli of stable curves
- Э. Прессли, Г. Сигал, Группы петель, Мир, 1990, 456 с.
- M. Romagny, “Group actions on stacks and applications”, Michigan Math. J., 53:1 (2005), 209–236
- Schemas en groupes, Seminaire de geometrie algebrique du Bois Marie 1962/64 (SGA 3), v. I, Lecture Notes in Math., 151, Prorpietes generales des schemas en groupes, eds. M. Demazure, A. Grothendieck, Springer-Verlag, Berlin–New York, 1970, xv+564 pp.
- G. Segal, “Unitary representations of some infinite-dimensional groups”, Comm. Math. Phys., 80:3 (1981), 301–342
- G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. Inst. Hautes Etudes Sci., 61 (1985), 5–65
- Ж.-П. Серр, Алгебры Ли и группы Ли, Ч. 1, 2, Мир, М., 1969, 379 с.
- The Stacks project
- Theorie des intersections et theorème de Riemann–Roch, Seminaire de Geometrie Algebrique du Bois Marie 1966/67 (SGA 6), Lecture Notes in Math., 225, eds. P. Berthelot, A. Grothendieck, L. Illusie, Springer-Verlag, Berlin–New York, 1971, xii+700 pp.
- Theorie des topos et cohomologie etale des schemas, Seminaire de geometrie algebrique du Bois Marie 1963/64 (SGA 4), v. 1, Lecture Notes in Math., 269, Theorie des topos, eds. M. Artin, A. Grothendieck, J. L. Verdier, Springer-Verlag, Berlin–New York, 1972, xix+525 pp.
补充文件
