Asymptotic stability of solutions to quasilinear damped wave equations with variable sources
- Авторлар: Yang X.1, Wu X.1, Zhuang J.1
-
Мекемелер:
- Changchun University of Science and Technology
- Шығарылым: Том 88, № 4 (2024)
- Беттер: 204-224
- Бөлім: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/261168
- DOI: https://doi.org/10.4213/im9499
- ID: 261168
Дәйексөз келтіру
Аннотация
Авторлар туралы
Xiaoxin Yang
Changchun University of Science and Technology
Xiulan Wu
Changchun University of Science and TechnologyDoctor of physico-mathematical sciences, Associate professor
Jiabao Zhuang
Changchun University of Science and Technology
Әдебиет тізімі
- L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011, x+509 pp.
- S. A. Messaoudi, A. A. Talahmeh, “On wave equation: review and recent results”, Arab. J. Math. (Springer), 7:2 (2018), 113–145
- S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions. Existence, uniqueness, localization, blow-up, Atlantis Stud. Differ. Equ., 4, Atlantis Press, Paris, 2015, xviii+409 pp.
- Yunmei Chen, S. Levine, M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66:4 (2006), 1383–1406
- V. D. Rădulescu, D. D. Repovš, Partial differential equations with variable exponents. Variational methods and qualitative analysis, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2015, xxi+301 pp.
- S. Antontsev, “Wave equation with $p(x, t)$-Laplacian and damping term: existence and blow-up”, Differ. Equ. Appl., 3:4 (2011), 503–525
- S. Antontsev, J. Ferreira, “Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions”, Nonlinear Anal., 93 (2013), 62–77
- G. Autuori, P. Pucci, M. C. Salvatori, “Global nonexistence for nonlinear Kirchhoff systems”, Arch. Ration. Mech. Anal., 196:2 (2010), 489–516
- Bin Guo, Wenjie Gao, “Blow-up of solutions to quasilinear hyperbolic equations with $p(x, t)$-Laplacian and positive initial energy”, C. R. Mecanique, 342:9 (2014), 513–519
- S. A. Messaoudi, A. A. Talahmeh, “A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities”, Appl. Anal., 96:9 (2017), 1509–1515
- S. A. Messaoudi, A. A. Talahmeh, “Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities”, Math. Methods Appl. Sci., 40:18 (2017), 6976–6986
- S. A. Messaoudi, A. A. Talahmeh, J. H. Al-Smail, “Nonlinear damped wave equation: existence and blow-up”, Comput. Math. Appl., 74:12 (2017), 3024–3041
- S. A. Messaoudi, J. H. Al-Smail, A. A. Talahmeh, “Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities”, Comput. Math. Appl., 76:8 (2018), 1863-1875
- Xiaolei Li, Bin Guo, Menglan Liao, “Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources”, Comput. Math. Appl., 79:4 (2020), 1012–1022
- V. Komornik, Exact controllability and stabilization. The multiplier method, RAM Res. Appl. Math., Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994, viii+156 pp.
- J. Haehnle, A. Prohl, “Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions”, Math. Comp., 79:269 (2010), 189–208
Қосымша файлдар
