Asymptotic stability of solutions to quasilinear damped wave equations with variable sources

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper, we consider the following quasilinear damped hyperbolic equation involving variable exponents:$$u_{tt}-\operatorname{div}( |\nabla u|^{r(x)-2}\nabla u)+|u_t|^{m(x)-2} u_t-\Delta u_t=|u|^{q(x)-2}u,$$with homogenous Dirichlet initial boundary value condition. An energy estimate and Komornik's inequality are used to prove uniform estimate of decay rates of the solution. We also show that $u(x, t)=0$ is asymptotic stable in terms of natural energy associated with the solution of the above equation. As we know, such results are seldom seen for the variable exponent case. At last, we give some numerical examples to illustrate our results.Bibliography: 16 titles.

Авторлар туралы

Xiaoxin Yang

Changchun University of Science and Technology

Xiulan Wu

Changchun University of Science and Technology

Doctor of physico-mathematical sciences, Associate professor

Jiabao Zhuang

Changchun University of Science and Technology

Әдебиет тізімі

  1. L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011, x+509 pp.
  2. S. A. Messaoudi, A. A. Talahmeh, “On wave equation: review and recent results”, Arab. J. Math. (Springer), 7:2 (2018), 113–145
  3. S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions. Existence, uniqueness, localization, blow-up, Atlantis Stud. Differ. Equ., 4, Atlantis Press, Paris, 2015, xviii+409 pp.
  4. Yunmei Chen, S. Levine, M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66:4 (2006), 1383–1406
  5. V. D. Rădulescu, D. D. Repovš, Partial differential equations with variable exponents. Variational methods and qualitative analysis, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2015, xxi+301 pp.
  6. S. Antontsev, “Wave equation with $p(x, t)$-Laplacian and damping term: existence and blow-up”, Differ. Equ. Appl., 3:4 (2011), 503–525
  7. S. Antontsev, J. Ferreira, “Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions”, Nonlinear Anal., 93 (2013), 62–77
  8. G. Autuori, P. Pucci, M. C. Salvatori, “Global nonexistence for nonlinear Kirchhoff systems”, Arch. Ration. Mech. Anal., 196:2 (2010), 489–516
  9. Bin Guo, Wenjie Gao, “Blow-up of solutions to quasilinear hyperbolic equations with $p(x, t)$-Laplacian and positive initial energy”, C. R. Mecanique, 342:9 (2014), 513–519
  10. S. A. Messaoudi, A. A. Talahmeh, “A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities”, Appl. Anal., 96:9 (2017), 1509–1515
  11. S. A. Messaoudi, A. A. Talahmeh, “Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities”, Math. Methods Appl. Sci., 40:18 (2017), 6976–6986
  12. S. A. Messaoudi, A. A. Talahmeh, J. H. Al-Smail, “Nonlinear damped wave equation: existence and blow-up”, Comput. Math. Appl., 74:12 (2017), 3024–3041
  13. S. A. Messaoudi, J. H. Al-Smail, A. A. Talahmeh, “Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities”, Comput. Math. Appl., 76:8 (2018), 1863-1875
  14. Xiaolei Li, Bin Guo, Menglan Liao, “Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources”, Comput. Math. Appl., 79:4 (2020), 1012–1022
  15. V. Komornik, Exact controllability and stabilization. The multiplier method, RAM Res. Appl. Math., Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994, viii+156 pp.
  16. J. Haehnle, A. Prohl, “Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions”, Math. Comp., 79:269 (2010), 189–208

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Yang X., Wu X., Zhuang J., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».