A class of evolution differential inclusion systems
- Authors: Zhao J.1, Liu Z.2,3, Papageorgiou N.S.4
-
Affiliations:
- Guangxi University of Finance and Economics
- Guangxi Minzu University
- Yulin Normal University
- Department of Mathematics, National Technical University of Athens
- Issue: Vol 88, No 2 (2024)
- Pages: 5-32
- Section: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/254261
- DOI: https://doi.org/10.4213/im9450
- ID: 254261
Cite item
Abstract
About the authors
Jing Zhao
Guangxi University of Finance and Economics
Zhenhai Liu
Guangxi Minzu University; Yulin Normal UniversityDoctor of Science, Professor
Nikolaos S. Papageorgiou
Department of Mathematics, National Technical University of Athens
Email: npapg@math.ntua.gr
References
- M. Pierre, T. Suzuki, H. Umakoshi, “Global-in-time behavior of weak solutions to reaction-diffusion systems with inhomogeneous Dirichlet boundary condition”, Nonlinear Anal., 159 (2017), 393–407
- E. F. Keller, L. A. Segel, “Initiation of slime mold aggregation viewed as an instability”, J. Theoret. Biol., 26:3 (1970), 399–415
- K. Ishige, P. Laurencot, N. Mizoguchi, “Blow-up behavior of solutions to a degenerate parabolic-parabolic Keller–Segel system”, Math. Ann., 367:1-2 (2017), 461–499
- N. Mizoguchi, “Global existence for the Cauchy problem of the parabolic-parabolic Keller–Segel system on the plane”, Calc. Var. Partial Differential Equations, 48:3-4 (2013), 491–505
- N. Mizoguchi, “Type II blowup in a doubly parabolic Keller–Segel system in two dimensions”, J. Funct. Anal., 271:11 (2016), 3323–3347
- Wenxian Shen, Shuwen Xue, “Persistence and convergence in parabolic-parabolic chemotaxis system with logistic source on $mathbb R^N$”, Discrete Contin. Dyn. Syst., 42:6 (2022), 2893–2925
- Youshan Tao, Lihe Wang, Zhi-An Wang, “Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension”, Discrete Contin. Dyn. Syst. Ser. B, 18:3 (2013), 821–845
- А. Ф. Филиппов, Дифференциальные уравнения с разрывной правой частью, Наука, М., 1985, 224 с.
- Jong-Shi Pang, D. E. Stewart, “Differential variational inequalities”, Math. Program., 113:2 (2008), 345–424
- Xiaojun Chen, Zhengyu Wang, “Convergence of regularized time-stepping methods for differential variational inequalities”, SIAM J. Optim., 23:3 (2013), 1647–1671
- Xiaojun Chen, Zhengyu Wang, “Differential variational inequality approach to dynamic games with shared constraints”, Math. Program., 146:1-2 (2014), 379–408
- J. Gwinner, “On a new class of differential variational inequalities and a stability result”, Math. Program., 139:1-2 (2013), 205–221
- Lanshan Han, Jong-Shi Pang, “Non-Zenoness of a class of differential quasi-variational inequalities”, Math. Program., 121:1 (2010), 171–199
- Jong-Shi Pang, D. E. Stewart, “Solution dependence on initial conditions in differential variational inequalities”, Math. Program., 116:1-2 (2009), 429–460
- Jong-Shi Pang, Lanshan Han, G. Ramadurai, S. Ukkusuri, “A continuous-time linear complementarity system for dynamic user equilibria in single bottleneck traffic flows”, Math. Program., 133:1-2 (2012), 437–460
- Zhenhai Liu, Shengda Zeng, D. Motreanu, “Evolutionary problems driven by variational inequalities”, J. Differential Equations, 260:9 (2016), 6787–6799
- Zhenhai Liu, S. Migorski, Shengda Zeng, “Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces”, J. Differential Equations, 263:7 (2017), 3989–4006
- Zhenhai Liu, D. Motreanu, Shengda Zeng, “Nonlinear evolutionary systems driven by mixed variational inequalities and its applications”, Nonlinear Anal. Real World Appl., 42 (2018), 409–421
- Nguyen Van Loi, “On two-parameter global bifurcation of periodic solutions to a class of differential variational inequalities”, Nonlinear Anal., 122 (2015), 83–99
- Liang Lu, Zhenhai Liu, V. Obukhovskii, “Second order differential variational inequalities involving anti-periodic boundary value conditions”, J. Math. Anal. Appl., 473:2 (2019), 846–865
- Zhenhai Liu, Shengda Zeng, D. Motreanu, “Partial differential hemivariational inequalities”, Adv. Nonlinear Anal., 7:4 (2018), 571–586
- Xiuwen Li, Zhenhai Liu, “Sensitivity analysis of optimal control problems described by differential hemivariational inequalities”, SIAM J. Control Optim., 56:5 (2018), 3569–3597
- Zhenhai Liu, D. Motreanu, Shengda Zeng, “Generalized penalty and regularization method for differential variational-hemivariational inequalities”, SIAM J. Optim., 31:2 (2021), 1158–1183
- Shengda Zeng, Zhenhai Liu, S. Migorski, “A class of fractional differential hemivariational inequalities with application to contact problem”, Z. Angew. Math. Phys., 69:2 (2018), 36, 23 pp.
- Shengda Zeng, S. Migorski, Zhenhai Liu, “Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities”, SIAM J. Optim., 31:4 (2021), 2829–2862
- S. Migorski, Shengda Zeng, “A class of differential hemivariational inequalities in Banach spaces”, J. Global Optim., 72:4 (2018), 761–779
- S. Migorski, “A class of history-dependent systems of evolution inclusions with applications”, Nonlinear Anal. Real World Appl., 59 (2021), 103246, 21 pp.
- Nguyen Thi Van Anh, Tran Dinh Ke, “On the differential variational inequalities of parabolic-parabolic type”, Acta Appl. Math., 176 (2021), 5, 25 pp.
- Xiuwen Li, Zhenhai Liu, N. S. Papageorgiou, “Solvability and pullback attractor for a class of differential hemivariational inequalities with its applications”, Nonlinearity, 36:2 (2023), 1323–1348
- Yongjian Liu, Zhenhai Liu, N. S. Papageorgiou, “Sensitivity analysis of optimal control problems driven by dynamic history-dependent variational-hemivariational inequalities”, J. Differential Equations, 342 (2023), 559–595
- Shouchuan Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. I, Math. Appl., 419, Theory, Kluwer Acad. Publ., Dordrecht, 1997, xvi+964 pp.
- Shouchuan Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. II, Math. Appl., 500, Applications, Kluwer Acad. Publ., Dordrecht, 2000, xii+926 pp.
- S. Migorski, A. Ochal, “Quasi-static hemivariational inequality via vanishing acceleration approach”, SIAM J. Math. Anal., 41:4 (2009), 1415–1435
- S. Migorski, A. Ochal, M. Sofonea, Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems, Adv. Mech. Math., 26, Springer, New York, 2013, xvi+285 pp.
- Z. Denkowski, S. Migorski, N. S. Papageorgiou, An introduction to nonlinear analysis: theory, Kluwer Acad. Publ., Boston, MA, 2003, xvi+689 pp.
- P. Kalita, “Convergence of Rothe scheme for hemivariational inequalities of parabolic type”, Int. J. Numer. Anal. Model., 10:2 (2013), 445–465
- Xunjing Li, Jiongmin Yong, Optimal control theory for infinite dimensional systems, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1995, xii+448 pp.
- H. F. Bohnenblust, S. Karlin, “On a theorem of Ville”, Contributions to the theory of games, Ann. of Math. Stud., 24, Princeton Univ. Press, Princeton, NJ, 1950, 155–160
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983, viii+279 pp.
- Zijia Peng, Zhenhai Liu, Xiaoyou Liu, “Boundary hemivariational inequality problems with doubly nonlinear operators”, Math. Ann., 356:4 (2013), 1339–1358
- Yongjian Liu, Zhenhai Liu, Sisi Peng, Ching-Feng Wen, “Optimal feedback control for a class of fractional evolution equations with history-dependent operators”, Fract. Calc. Appl. Anal., 25:3 (2022), 1108–1130
- Biao Zeng, Zhenhai Liu, “Existence results for impulsive feedback control systems”, Nonlinear Anal. Hybrid Syst., 33 (2019), 1–16
- Zhao Jing, Zhenhai Liu, E. Vilches, Chingfeng Wen, Jen-Chih Yao, “Optimal control of an evolution hemivariational inequality involving history-dependent operators”, Commun. Nonlinear Sci. Numer. Simul., 103 (2021), 105992, 17 pp.
- E. Maitre, P. Witomski, “A pseudo-monotonicity adapted to doubly nonlinear elliptic-parabolic equations”, Nonlinear Anal., 50:2 (2002), 223–250
- Weimin Han, M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, AMS/IP Stud. Adv. Math., 30, Amer. Math. Soc., Providence, RI; International Press, Somerville, MA, 2002, xviii+442 pp.
- M. Sofonea, Weimin Han, M. Shillor, Analysis and approximation of contact problems with adhesion or damage, Pure Appl. Math. (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2006, xviii+220 pp.
Supplementary files
