Цветная теорема Тверберга, обобщения и новые результаты
- Авторы: Йойич Д.1, Панина Г.Ю.2,3, Живалевич Р.Т.4
-
Учреждения:
- University of Banja Luka
- Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук
- Санкт-Петербургский государственный университет
- Mathematical Institute, Serbian Academy of Sciences and Arts
- Выпуск: Том 86, № 2 (2022)
- Страницы: 62-79
- Раздел: Статьи
- URL: https://ogarev-online.ru/1607-0046/article/view/142260
- DOI: https://doi.org/10.4213/im9024
- ID: 142260
Цитировать
Аннотация
Ключевые слова
Полный текст

Об авторах
Душко Йойич
University of Banja Luka
Email: ducci68@blic.net
Гаянэ Юрьевна Панина
Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук; Санкт-Петербургский государственный университет
Email: gaiane-panina@rambler.ru
доктор физико-математических наук, без звания
Раде Т. Живалевич
Mathematical Institute, Serbian Academy of Sciences and Arts
Список литературы
- J. Matoušek, Using the Borsuk–Ulam theorem, Lectures on topological methods in combinatorics and geometry, Universitext, Springer-Verlag, Berlin, 2003, xii+196 pp.
- R. T. Živaljevic, “Topological methods in discrete geometry”, Ch. 21, Handbook of discrete and computational geometry, Discrete Math. Appl. (Boca Raton), 3rd ed., CRC Press, Boca Raton, FL, 2017, 551–580
- I. Barany, S. B. Shlosman, A. Szűcs, “On a topological generalization of a theorem of Tverberg”, J. London Math. Soc. (2), 23:1 (1981), 158–164
- M. Özaydin, Equivariant maps for the symmetric group, Unpublished preprint, Univ. of Wisconsin-Madison, 1987, 17 pp.
- А. Ю. Воловиков, “К топологическому обобщению теоремы Тверберга”, Матем. заметки, 59:3 (1996), 454–456
- T. Schöneborn, On the topological Tverberg theorem
- T. Schöneborn, G. M. Ziegler, “The topological Tverberg theorem and winding numbers”, J. Combin. Theory Ser. A, 112:1 (2005), 82–104
- А. Б. Скопенков, “Топологическая гипотеза Тверберга”, УМН, 73:2(440) (2018), 141–174
- A. Vučic, R. T. Živaljevic, “Note on a conjecture of Sierksma”, Discrete Comput. Geom., 9:4 (1993), 339–349
- S. Hell, “On the number of Tverberg partitions in the prime power case”, European J. Combin., 28:1 (2007), 347–355
- R. T. Živaljevic, S. T. Vrecica, “The colored Tverberg's problem and complexes of injective functions”, J. Combin. Theory Ser. A, 61:2 (1992), 309–318
- S. T. Vrecica, R. T. Živaljevic, “New cases of the colored Tverberg theorem”, Jerusalem combinatorics '93, Contemp. Math., 178, Amer. Math. Soc., Providence, RI, 1994, 325–334
- D. Jojic, S. T. Vrecica, R. T. Živaljevic, “Symmetric multiple chessboard complexes and a new theorem of Tverberg type”, J. Algebraic Combin., 46:1 (2017), 15–31
- F. Frick, On affine Tverberg-type results without continuous generalization
- A. Kushkuley, Z. Balanov, Geometric methods in degree theory for equivariant maps, Lecture Notes in Math., 1632, Springer-Verlag, Berlin, 1996, vi+136 pp.
- D. Jojic, I. Nekrasov, G. Panina, R. Živaljevic, “Alexander $r$-tuples and Bier complexes”, Publ. Inst. Math. (Beograd) (N.S.), 104:118 (2018), 1–22
- D. Jojic, S. T. Vrecica, G. Panina, R. Živaljevic, “Generalized chessboard complexes and discrete Morse theory”, Чебышевский сб., 21:2 (2020), 207–227
- D. Jojic, G. Panina, R. Živaljevic, “A Tverberg type theorem for collectively unavoidable complexes”, Israel J. Math., 241:1 (2021), 17–36
- R. Forman, “A user's guide to discrete Morse theory”, Sem. Lothar. Combin., 48 (2002), B48c, 35 pp.
- I. Mabillard, U. Wagner, “Eliminating Tverberg points, I. An analogue of the Whitney trick”, Computational geometry (SoCG{'14}), ACM, New York, 2014, 171–180
- I. Mabillard, U. Wagner, Eliminating higher-multiplicity intersections, I. A Whitney trick for Tverberg-type problems
- I. Mabillard, U. Wagner, “Eliminating higher-multiplicity intersections, II. The deleted product criterion in the $r$-metastable range”, 32nd International symposium on computational geometry (SoCG{'16}), LIPIcs. Leibniz Int. Proc. Inform., 51, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016, 51, 12 pp.
- A. Skopenkov, On the metastable Mabillard–Wagner conjecture
- A. B. Skopenkov, Eliminating higher-multiplicity intersections in the metastable dimension range
- A. B. Skopenkov, Invariants of graph drawings in the plane
- P. V. M. Blagojevic, B. Matschke, G. M. Ziegler, “Optimal bounds for the colored Tverberg problem”, J. Eur. Math. Soc. (JEMS), 17:4 (2015), 739–754
- I. Barany, P. V. M. Blagojevic, G. M. Ziegler, “Tverberg's theorem at 50: extensions and counterexamples”, Notices Amer. Math. Soc., 63:7 (2016), 732–739
- I. Barany, P. Soberon, “Tverberg's theorem is 50 years old: a survey”, Bull. Amer. Math. Soc. (N.S.), 55:4 (2018), 459–492
- I. Barany, D. G. Larman, “A colored version of Tverberg's theorem”, J. London Math. Soc. (2), 45:2 (1992), 314–320
- K. S. Sarkaria, “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565
- А. Ю. Воловиков, “К теореме ван Кампена–Флореса”, Матем. заметки, 59:5 (1996), 663–670
- P. V. M. Blagojevic, F. Frick, G. M. Ziegler, “Tverberg plus constraints”, Bull. Lond. Math. Soc., 46:5 (2014), 953–967
- R. Živaljevic, “User's guide to equivariant methods in combinatorics”, Publ. Inst. Math. (Beograd) (N.S.), 59(73) (1996), 114–130
- R. T. Živaljevic, “User's guide to equivariant methods in combinatorics. II”, Publ. Inst. Math. (Beograd) (N.S.), 64(78) (1998), 107–132
- D. Jojic, S. T. Vrecica, R. T. Živaljevic, “Multiple chessboard complexes and the colored Tverberg problem”, J. Combin. Theory Ser. A, 145 (2017), 400–425
Дополнительные файлы
