Ramification filtration and differential forms
- Authors: Abrashkin V.A.1,2
-
Affiliations:
- University of Durham
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 87, No 3 (2023)
- Pages: 5-22
- Section: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/133905
- DOI: https://doi.org/10.4213/im9322
- ID: 133905
Cite item
Abstract
Let $L$ be a complete discrete valuation field of prime characteristic $p$ with finite residue field. Denote by $\Gamma_{L}^{(v)}$ the ramification subgroups of $\Gamma_{L}=\operatorname{Gal}(L^{\mathrm{sep}}/L)$. We consider the category $\operatorname{M\Gamma}_{L}^{\mathrm{Lie}}$ of finite $\mathbb{Z}_p[\Gamma_{L}]$-modules $H$, satisfying some additional (Lie)-condition on the image of $\Gamma_L$ in $\operatorname{Aut}_{\mathbb{Z}_p}H$. In the paper it is proved that all information about the images of the groups $\Gamma_L^{(v)}$ in $\operatorname{Aut}_{\mathbb{Z}_p}H$ can be explicitly extracted from some differential forms $\widetilde{\Omega} [N]$ on the Fontaine etale $\phi $-module $M(H)$ associated with $H$. The forms $\widetilde{\Omega}[N]$ are completely determined by a canonical connection $\nabla $ on $M(H)$. In the case of fields $L$ of mixed characteristic, which contain a primitive $p$th root of unity, we show that a similar problem for $\mathbb{F}_p[\Gamma_L]$-modules also admits a solution. In this case we use the field-of-norms functor to construct the corresponding $\phi $-module together with the action of the Galois group of a cyclic extension $L_1$ of $L$ of degree $p$. Then our solution involves the characteristic $p$ part (provided by the field-of-norms functor) and the condition for a “good” lift of a generator of $\operatorname{Gal}(L_1/L)$. Apart from the above differential forms the statement of this condition uses the power series coming from the $p$-adic period of the formal group $\mathbb{G}_m$.Bibliography: 21 titles.
About the authors
Viktor Aleksandrovich Abrashkin
University of Durham; Steklov Mathematical Institute of Russian Academy of Sciences
Email: victor.abrashkin@durham.ac.uk
Doctor of physico-mathematical sciences, no status
References
- J.-P. Serre, Local fields, Transl. from the French, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979, viii+241 pp.
- И. Р. Шафаревич, “О $p$-расширениях”, Матем. сб., 20(62):2 (1947), 351–363
- С. П. Демушкин, “Группа максимального $p$-расширения локального поля”, Изв. АН СССР. Сер. матем., 25:3 (1961), 329–346
- U. Jannsen, K. Wingberg, “Die Struktur der absoluten Galoisgruppe $mathfrak p$-adischer Zahlkörper”, Invent. Math., 70:1 (1982/83), 71–98
- Sh. Mochizuki, “A version of the Grothendieck conjecture for $p$-adic local fields”, Internat. J. Math., 8:4 (1997), 499–506
- V. A. Abrashkin, “On a local analogue of the Grothendieck conjecture”, Internat. J. Math., 11:2 (2000), 133–175
- Х. Кох, Теория Галуа $p$-расширений, Мир, М., 1973, 199 с.
- В. А. Абрашкин, “Фильтрация ветвления группы Галуа локального поля”, Тр. С.-Петерб. матем. о-ва, 3, Изд-во С.-Петерб. ун-та, СПб., 1994
- В. А. Абрашкин, “Фильтрация ветвления группы Галуа локадьного поля. II”, Теория чисел, алгебра и алгебраическая геометрия, Сборник статей. К семидесятилетию со дня рождения академика Игоря Ростиславовича Шафаревича, Тр. МИАН, 208, Наука, Физматлит, М., 1995, 18–69
- В. А. Абрашкин, “Фильтрация ветвления группы Галуа локального поля. III”, Изв. РАН. Сер. матем., 62:5 (1998), 3–48
- V. Abrashkin, “Groups of automorphisms of local fields of period $p$ and nilpotent class $
- V. Abrashkin, “Groups of automorphisms of local fields of period $p$ and nilpotent class $
- V. Abrashkin, “Groups of automorphisms of local fields of period $p^M$ and nilpotent class $
- P. Berthelot, W. Messing, “Theorie de Deudonne cristalline. III. Theorèmes d'equivalence et de pleine fidelite”, The Grothendieck festschrift, v. 1, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990, 173–247
- M. Lazard, “Sur les groupes nilpotents et les anneaux de Lie”, Ann. Sci. Ecole Norm. Sup. (3), 71:2 (1954), 101–190
- J.-M. Fontaine, “Representations $p$-adiques des corps locaux. I”, The Grothendieck festschrift, v. 2, Progr. Math., 87, Birkhäuser Boston, Boston, MA, 1990, 249–309
- V. Abrashkin, R. Jenni, “The field-of-norms functor and the Hilbert symbol for higher local fields”, J. Theor. Nombres Bordeaux, 24:1 (2012), 1–39
- V. Abrashkin, “Galois groups of local fields, Lie algebras and ramification”, Arithmetic and geometry, London Math. Soc. Lecture Note Ser., 420, Cambridge Univ. Press, Cambridge, 2015, 1–23
- В. А. Абрашкин, “Фильтрация ветвления и деформации”, Матем. сб., 212:2 (2021), 3–37
- A. Bonfiglioli, R. Fulci, Topics in noncommutative algebra, Lecture Notes in Math., 2034, Springer, Heidelberg, 2012, xxii+539 pp.
- K. Imai, Ramification groups of some finite Galois extensions of maximal nilpotency class over local fields of positive characteristic
Supplementary files
