Approximation in measure: the Dirichlet problem, universality and the Riemann hypothesis
- Authors: Falcó J.1, Gauthier P.M.2
-
Affiliations:
- Universidad de Valencia
- Université de Montréal, Département de Mathématiques et deStatistique
- Issue: Vol 85, No 3 (2021)
- Pages: 222-238
- Section: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/133875
- DOI: https://doi.org/10.4213/im9033
- ID: 133875
Cite item
Abstract
We use approximation in measure to solve an asymptotic Dirichlet problem on arbitrary open sets and to show that many functions, including the Riemann zeta-function, are universal in measure. Connections with the Riemann hypothesis are suggested.
About the authors
Javier Falcó
Universidad de Valencia
Paul M. Gauthier
Université de Montréal, Département de Mathématiques et deStatistique
Email: gauthier@dms.umontreal.ca
References
- K.-G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bull. Amer. Math. Soc. (N.S.), 36:3 (1999), 345–381
- P. M. Gauthier, F. Sharifi, “Luzin-type holomorphic approximation on closed subsets of open Riemann surfaces”, Canad. Math. Bull., 60:2 (2017), 300–308
- P. M. Gauthier, F. Sharifi, “Luzin-type harmonic approximation on subsets of non-compact Riemannian manifolds”, J. Math. Anal. Appl., 474:2 (2019), 1132–1152
- J. Falco, P. M. Gauthier, “An asymptotic holomorphic boundary problem on arbitrary open sets in Riemann surfaces”, J. Approx. Theory, 257 (2020), 105451, 11 pp.
- M. Craioveanu, M. Puta, T. M. Rassias, “Canonical differential operators associated to a Riemannian manifold”, Old and new aspects in spectral geometry, Ch. 2, Math. Appl., 534, Kluwer Acad. Publ., Dordrecht, 2001, 75–117
- J. Andersson, “Mergelyan's approximation theorem with nonvanishing polynomials and universality of zeta-functions”, J. Approx. Theory, 167 (2013), 201–210
- J. Steuding, Value-distribution of $L$-functions, Lecture Notes in Math., 1877, Springer, Berlin, 2007, xiv+317 pp.
- T. Bagby, P. M. Gauthier, J. Woodworth, “Tangential harmonic approximation on Riemannian manifolds”, Harmonic analysis and number theory (Montreal, PQ, 1996), CMS Conf. Proc., 21, Amer. Math. Soc., Providence, RI, 1997, 58–72
- D. H. Armitage, P. M. Gauthier, “Recent developments in harmonic approximation, with applications”, Results Math., 29:1-2 (1996), 1–15
- K. Matsumoto, “A survey on the theory of universality for zeta and $L$-functions”, Number theory. Plowing and starring through high wave forms (Fukuoka, 2013), Ser. Number Theory Appl., 11, World Sci. Publ., Hackensack, NJ, 2015, 95–144
- E. C. Titchmarsh, The theory of the Riemann zeta-function, Edited and with a preface by D. R. Heath-Brown, 2nd ed., The Clarendon Press, Oxford Univ. Press, New York, 1986, x+412 pp.
- B. Bagchi, “Recurrence in topological dynamics and the Riemann hypothesis”, Acta Math. Hungar., 50:3-4 (1987), 227–240
Supplementary files
