Approximation in measure: the Dirichlet problem, universality and the Riemann hypothesis
- Authors: Falcó J.1, Gauthier P.M.2
-
Affiliations:
- Universidad de Valencia
- Université de Montréal, Département de Mathématiques et deStatistique
- Issue: Vol 85, No 3 (2021)
- Pages: 222-238
- Section: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/133875
- DOI: https://doi.org/10.4213/im9033
- ID: 133875
Cite item
Abstract
About the authors
Javier Falcó
Universidad de Valencia
Paul M. Gauthier
Université de Montréal, Département de Mathématiques et deStatistique
Email: gauthier@dms.umontreal.ca
References
- K.-G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bull. Amer. Math. Soc. (N.S.), 36:3 (1999), 345–381
- P. M. Gauthier, F. Sharifi, “Luzin-type holomorphic approximation on closed subsets of open Riemann surfaces”, Canad. Math. Bull., 60:2 (2017), 300–308
- P. M. Gauthier, F. Sharifi, “Luzin-type harmonic approximation on subsets of non-compact Riemannian manifolds”, J. Math. Anal. Appl., 474:2 (2019), 1132–1152
- J. Falco, P. M. Gauthier, “An asymptotic holomorphic boundary problem on arbitrary open sets in Riemann surfaces”, J. Approx. Theory, 257 (2020), 105451, 11 pp.
- M. Craioveanu, M. Puta, T. M. Rassias, “Canonical differential operators associated to a Riemannian manifold”, Old and new aspects in spectral geometry, Ch. 2, Math. Appl., 534, Kluwer Acad. Publ., Dordrecht, 2001, 75–117
- J. Andersson, “Mergelyan's approximation theorem with nonvanishing polynomials and universality of zeta-functions”, J. Approx. Theory, 167 (2013), 201–210
- J. Steuding, Value-distribution of $L$-functions, Lecture Notes in Math., 1877, Springer, Berlin, 2007, xiv+317 pp.
- T. Bagby, P. M. Gauthier, J. Woodworth, “Tangential harmonic approximation on Riemannian manifolds”, Harmonic analysis and number theory (Montreal, PQ, 1996), CMS Conf. Proc., 21, Amer. Math. Soc., Providence, RI, 1997, 58–72
- D. H. Armitage, P. M. Gauthier, “Recent developments in harmonic approximation, with applications”, Results Math., 29:1-2 (1996), 1–15
- K. Matsumoto, “A survey on the theory of universality for zeta and $L$-functions”, Number theory. Plowing and starring through high wave forms (Fukuoka, 2013), Ser. Number Theory Appl., 11, World Sci. Publ., Hackensack, NJ, 2015, 95–144
- E. C. Titchmarsh, The theory of the Riemann zeta-function, Edited and with a preface by D. R. Heath-Brown, 2nd ed., The Clarendon Press, Oxford Univ. Press, New York, 1986, x+412 pp.
- B. Bagchi, “Recurrence in topological dynamics and the Riemann hypothesis”, Acta Math. Hungar., 50:3-4 (1987), 227–240
Supplementary files
