Approximation in measure: the Dirichlet problem, universality and the Riemann hypothesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We use approximation in measure to solve an asymptotic Dirichlet problem on arbitrary open sets and to show that many functions, including the Riemann zeta-function, are universal in measure. Connections with the Riemann hypothesis are suggested.

About the authors

Javier Falcó

Universidad de Valencia

Paul M. Gauthier

Université de Montréal, Département de Mathématiques et deStatistique

Email: gauthier@dms.umontreal.ca

References

  1. K.-G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bull. Amer. Math. Soc. (N.S.), 36:3 (1999), 345–381
  2. P. M. Gauthier, F. Sharifi, “Luzin-type holomorphic approximation on closed subsets of open Riemann surfaces”, Canad. Math. Bull., 60:2 (2017), 300–308
  3. P. M. Gauthier, F. Sharifi, “Luzin-type harmonic approximation on subsets of non-compact Riemannian manifolds”, J. Math. Anal. Appl., 474:2 (2019), 1132–1152
  4. J. Falco, P. M. Gauthier, “An asymptotic holomorphic boundary problem on arbitrary open sets in Riemann surfaces”, J. Approx. Theory, 257 (2020), 105451, 11 pp.
  5. M. Craioveanu, M. Puta, T. M. Rassias, “Canonical differential operators associated to a Riemannian manifold”, Old and new aspects in spectral geometry, Ch. 2, Math. Appl., 534, Kluwer Acad. Publ., Dordrecht, 2001, 75–117
  6. J. Andersson, “Mergelyan's approximation theorem with nonvanishing polynomials and universality of zeta-functions”, J. Approx. Theory, 167 (2013), 201–210
  7. J. Steuding, Value-distribution of $L$-functions, Lecture Notes in Math., 1877, Springer, Berlin, 2007, xiv+317 pp.
  8. T. Bagby, P. M. Gauthier, J. Woodworth, “Tangential harmonic approximation on Riemannian manifolds”, Harmonic analysis and number theory (Montreal, PQ, 1996), CMS Conf. Proc., 21, Amer. Math. Soc., Providence, RI, 1997, 58–72
  9. D. H. Armitage, P. M. Gauthier, “Recent developments in harmonic approximation, with applications”, Results Math., 29:1-2 (1996), 1–15
  10. K. Matsumoto, “A survey on the theory of universality for zeta and $L$-functions”, Number theory. Plowing and starring through high wave forms (Fukuoka, 2013), Ser. Number Theory Appl., 11, World Sci. Publ., Hackensack, NJ, 2015, 95–144
  11. E. C. Titchmarsh, The theory of the Riemann zeta-function, Edited and with a preface by D. R. Heath-Brown, 2nd ed., The Clarendon Press, Oxford Univ. Press, New York, 1986, x+412 pp.
  12. B. Bagchi, “Recurrence in topological dynamics and the Riemann hypothesis”, Acta Math. Hungar., 50:3-4 (1987), 227–240

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Falcó J., Gauthier P.M.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».