Models of set theory in which the separation theorem fails
- Авторлар: Kanovei V.G.1, Lyubetskii V.A.1
-
Мекемелер:
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- Шығарылым: Том 85, № 6 (2021)
- Беттер: 164-204
- Бөлім: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/133866
- DOI: https://doi.org/10.4213/im8937
- ID: 133866
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
Vladimir Kanovei
Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
Email: kanovei@rambler.ru
Doctor of physico-mathematical sciences, Professor
Vasilii Lyubetskii
Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
Email: lyubetsk@iitp.ru
Doctor of physico-mathematical sciences, Professor
Әдебиет тізімі
- Н. Н. Лузин, Лекции об аналитических множествах и их приложениях, ГИТТЛ, М., 1953, 359 с.
- П. С. Новиков, “О непротиворечивости некоторых положений дескриптивной теории множеств”, Сборник статей. Посвящается академику Ивану Матвеевичу Виноградову к его 60-летию, Тр. МИАН СССР, 38, Изд-во АН СССР, М., 1951, 279–316
- В. Г. Кановей, В. А. Любецкий, “О некоторых классических проблемах дескриптивной теории множеств”, УМН, 58:5(353) (2003), 3–88
- Ya. N. Moschovakis, Descriptive set theory, Stud. Logic Found. Math., 100, North-Holland Publishing Co., Amsterdam–New York, 1980, xii+637 pp.
- A. S. Kechris, Classical descriptive set theory, Grad. Texts in Math., 156, Springer-Verlag, New York, 1995, xviii+402 pp.
- Н. Н. Лузин, “Об аналитических множествах”: Н. Н. Лузин, Собрание сочинений, т. II, Дескриптивная теория множеств, Изд-во АН СССР, М., 1958, 380–459
- P. Novikoff, “Sur les fonctions implicites mesurables B”, Fund. Math., 17 (1931), 8–25
- P. Novikoff, “Sur la separabilite des ensembles projectifs de seconde classe”, Fund. Math., 25 (1935), 459–466
- C. Kuratowski, “Sur les theorèmes de separation dans la theorie des ensembles”, Fund. Math., 26 (1936), 183–191
- J. W. Addison, “Some consequences of the axiom of constructibility”, Fund. Math., 46 (1959), 337–357
- J. W. Addison, Y. N. Moschovakis, “Some consequences of the axiom of definable determinateness”, Proc. Nat. Acad. Sci. U.S.A., 59:3 (1968), 708–712
- D. A. Martin, “The axiom of determinateness and reduction principles in the analytical hierarchy”, Bull. Amer. Math. Soc., 74 (1968), 687–689
- J. R. Steel, “Determinateness and the separation property”, J. Symb. Log., 46:1 (1981), 41–44
- J. R. Steel, The core model iterability problem, Lecture Notes Logic, 8, Springer-Verlag, Berlin, 1996, iv+112 pp.
- K. Hauser, R.-D. Schindler, “Projective uniformization revisited”, Ann. Pure Appl. Logic, 103:1-3 (2000), 109–153
- A. R. D. Mathias, “Surrealist landscape with figures (a survey of recent results in set theory)”, Period. Math. Hungar., 10:2-3 (1979), 109–175
- R. B. Jensen, R. M. Solovay, “Some applications of almost disjoint sets”, Mathematical logic and foundations of set theory (Jerusalem, 1968), North-Holland, Amsterdam, 1970, 84–104
- L. Harrington, The constructible reals can be (almost) anything, Handwritten notes, in four parts, 1974, 8 pp.
- R. Jensen, “Definable sets of minimal degree”, Mathematical logic and foundations of set theory (Jerusalem, 1968), North-Holland, Amsterdam, 1970, 122–128
- T. Jech, Set theory, Springer Monogr. Math., 3rd millennium ed., rev. and exp., Springer-Verlag, Berlin, 2003, xiv+769 pp.
- A. Enayat, “On the Leibniz–Mycielski axiom in set theory”, Fund. Math., 181:3 (2004), 215–231
- V. Kanovei, V. Lyubetsky, “A definable $mathsf E_0$-class containing no definable elements”, Arch. Math. Logic, 54:5-6 (2015), 711–723
- В. Г. Кановей, В. А. Любецкий, “Определимое счетное множество, не содержащее определимых элементов”, Матем. заметки, 102:3 (2017), 369–382
- M. Golshani, V. Kanovei, V. Lyubetsky, “A Groszek–Laver pair of undistinguishable $mathsf E_0$-classes”, MLQ Math. Log. Q., 63:1-2 (2017), 19–31
- V. Kanovei, V. Lyubetsky, “Counterexamples to countable-section $Pi^1_2$ uniformization and $Pi^1_3$ separation”, Ann. Pure Appl. Logic, 167:3 (2016), 262–283
- В. Г. Кановей, В. А. Любецкий, “Неуниформизуемые множества второго проективного уровня со счетными сечениями в виде классов Витали”, Изв. РАН. Сер. матем., 82:1 (2018), 65–96
- S.-D. Friedman, V. Gitman, V. Kanovei, “A model of second-order arithmetic satisfying AC but not DC”, J. Math. Log., 19:1 (2019), 1850013, 39 pp.
- A. Enayat, V. Kanovei, “An unpublished theorem of Solovay on OD partitions of reals into two non-OD parts, revisited”, J. Math. Log., 2020, 1–22, Publ. online
- В. Г. Кановей, “О непустоте классов в аксиоматической теории множеств”, Изв. АН СССР. Сер. матем., 42:3 (1978), 550–579
- V. Kanovei, V. Lyubetsky, “Definable $mathsf{E}_0$-classes at arbitrary projective levels”, Ann. Pure Appl. Logic, 169:9 (2018), 851–871
- V. Kanovei, V. Lyubetsky, “Definable minimal collapse functions at arbitrary projective levels”, J. Symb. Log., 84:1 (2019), 266–289
- V. Kanovei, V. Lyubetsky, “Non-uniformizable sets with countable cross-sections on a given level of the projective hierarchy”, Fund. Math., 245:2 (2019), 175–215
- V. Kanovei, V. Lyubetsky, “On the $Delta^1_n$ problem of Harvey Friedman”, Mathematics, 8:9 (2020), 1477, 30 pp.
- U. Abraham, “A minimal model for $negmathrm{CH}$: iteration of Jensen's reals”, Trans. Amer. Math. Soc., 281:2 (1984), 657–674
- J. E. Baumgartner, R. Laver, “Iterated perfect-set forcing”, Ann. Math. Logic, 17:3 (1979), 271–288
- M. Groszek, T. Jech, “Generalized iteration of forcing”, Trans. Amer. Math. Soc., 324:1 (1991), 1–26
- V. Kanovei, “Non-Glimm–Effros equivalence relations at second projective level”, Fund. Math., 154:1 (1997), 1–35
- V. Kanovei, “An Ulm-type classification theorem for equivalence relations in Solovay model”, J. Symb. Log., 62:4 (1997), 1333–1351
- V. Kanovei, “On non-wellfounded iterations of the perfect set forcing”, J. Symb. Log., 64:2 (1999), 551–574
- В. Г. Кановей, “Множество всех аналитически определимых множеств натуральных чисел может быть аналитически определимым”, Изв. АН СССР. Сер. матем., 43:6 (1979), 1259–1293
- S. Hoffelner, The consistency of the $mathbf{Sigma}^1_3$-separation property
Қосымша файлдар
