Real Segre cubics, Igusa quartics and Kummer quartics
- Authors: Krasnov V.A.1
-
Affiliations:
- P.G. Demidov Yaroslavl State University
- Issue: Vol 84, No 3 (2020)
- Pages: 71-118
- Section: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/133808
- DOI: https://doi.org/10.4213/im8827
- ID: 133808
Cite item
Abstract
About the authors
Vyacheslav Alekseevich Krasnov
P.G. Demidov Yaroslavl State University
Email: vakras@yandex.ru
Doctor of physico-mathematical sciences, Associate professor
References
- C. Segre, “Sulla varietà cubica con dieci punti doppi dello spazio a quattro dimensioni”, Atti R. Accad. Sci. Torino, XXII (1887), 791–801
- I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp.
- B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Math., 1637, Springer-Verlag, Berlin, 1996, xiv+332 pp.
- B. Hunt, “Nice modular varieties”, Experiment. Math., 9:4 (2000), 613–622
- В. А. Краснов, “Вещественные куммеровы квартики и их гейзенберг-инвариантность”, Изв. РАН. Сер. матем., 84:1 (2020), 105–162
- H. Finkelnberg, “Small resolutions of the Segre cubic”, Nederl. Akad. Wetensch. Indag. Math., 90:3 (1987), 261–277
- Г. Е. Шилов, Математический анализ. Функции нескольких вещественных переменных, Наука, М., 1972
- K. Rohn, “Die verschiedenen Gestalten der Kummer'schen Fläche”, Math. Ann., 18:1 (1881), 99–159
- R. W. H. T. Hudson, Kummer's quartic surface, Cambridge Univ. Press, Cambridge, 1905, xi+219 pp.
- H. F. Baker, Principles of geometry, v. 4, Cambridge Univ. Press, Cambridge, 1940, xvi+274 pp.
- M. R. Gonzalez-Dorrego, $(16,6)$ configurations and geometry of Kummer surfaces in $mathbb{P}^3$, Mem. Amer. Math. Soc., 107, no. 512, Amer. Math. Soc., Providence, RI, 1994, vi+101 pp.
- I. Nieto, “The singular $H_{2,2}$-invariant quartic surfaces in $mathbb{P}_3$”, Geom. Dedicata, 57:2 (1995), 157–170
- I. Nieto, “The normalizer of the level $(2,2)$-Heisenberg group”, Manuscripta Math., 76:3-4 (1992), 257–267
- W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991, xvi+551 pp.
- Р. Т. Рокафеллар, Выпуклый анализ, Мир, М., 1973, 472 с.
- Göttingen collection of mathematical models and instruments
Supplementary files
