Nucleation and Growth of Monodisperse Hexagonal NaYF4 Nanoparticles Synthesized by Trifl uoroacetate Precursors Thermolysis
- Autores: Arkharova N.A.1, Orekhov A.S.1, Koshelev A.V.1, Orekhov A.S.1, Karimov D.N.1
-
Afiliações:
- Shubnikov Institute of Crystallography, KCC&Ph, NRC Kurchatov Institute
- Edição: Volume 123, Nº 3-4 (2024): THEMED SECTION: STRUCTURAL DIAGNOSTICS OF MATERIALS
- Páginas: 38-45
- Seção: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/303500
- DOI: https://doi.org/10.22204/2410-4639-2024-123-124-03-04-38-45
- ID: 303500
Citar
Texto integral
Resumo
Synthesis process conditions for NaRF4 (R – rare-earth elements) nanoparticle production with specified structural and dimensional characteristics have been optimized by manipulating the technological parameters of the trifluoroacetate precursors thermolysis: temperature, duration of the experiment and composition of the reaction medium. The temporary and thermal parameters of NaRF4 nanoparticles growth from the nucleation stage to the formation of final nanocrystals have been analized with the direct sampling method. Limiting factors in the nanoparticles synthesis in both cubic and hexagonal polymorphic phases have been identified by transmission electron microscopy in detail. The key role of the heating rate of the reaction mixture at the initial synthesis stage on the structural and morphological characteristics of this type nanoobjects formation is demonstrated. The features of the phase transformation of nanoparticles from the metastable α-phase to the stable β-phase during thermolysis process are discussed.
Sobre autores
Natalia Arkharova
Shubnikov Institute of Crystallography, KCC&Ph, NRC Kurchatov Institute
Autor responsável pela correspondência
Email: natalya.arkharova@yandex.ru
Rússia, 59, bld. 1, Leninsky Ave., Moscow, 119333, Russia
Anton Orekhov
Shubnikov Institute of Crystallography, KCC&Ph, NRC Kurchatov Institute
Email: orekhov.anton@gmail.com
Rússia, 59, bld. 1, Leninsky Ave., Moscow, 119333, Russia
Alexander Koshelev
Shubnikov Institute of Crystallography, KCC&Ph, NRC Kurchatov Institute
Email: avkoshelev03@gmail.com
Rússia, 59, bld. 1, Leninsky Ave., Moscow, 119333, Russia
Andrey Orekhov
Shubnikov Institute of Crystallography, KCC&Ph, NRC Kurchatov Institute
Email: andreyorekhov@gmail.com
Rússia, 59, bld. 1, Leninsky Ave., Moscow, 119333, Russia
Denis Karimov
Shubnikov Institute of Crystallography, KCC&Ph, NRC Kurchatov Institute
Email: dnkarimov@gmail.com
Rússia, 59, bld. 1, Leninsky Ave., Moscow, 119333, Russia
Bibliografia
- G. Liang, H. Wang, H. Shi, H. Wang, M. Zhu, A. Jing, J. Li, G. Li J. Nanobiotechnology, 2020, 18, 154. doi: 10.1186/s12951-020-00713-3.
- H. Chen, B. Ding, P. Ma, J. Lin Adv. Drug Deliv. Rev., 2022, 188, 114414. doi: 10.1016/j.addr.2022.114414.
- S. Ji, S. Liu, X. Lin, Y. Song, B. Xiao, Q. Feng, W. Li, H. Xu, Z. Cai ACS Photonics, 2021, 8(8), 2311. doi: 10.1021/acsphotonics.1c00452.
- Z. Li, T. Ma, S. Li, W. Gu, L. Lu, H. Yang, Y. Dai, R. Wang ACS Nano, 2022, 16(7), 11473. doi: 10.1021/acsnano.2c05840.
- X. Jin, S.W. Leow, Y. Fang, L.H. Wong J. Mater. Chem. A, 2023, 11(24), 12992. doi: 10.1039/D3TA00241A.
- S. Wilhelm ACS Nano, 2017, 11(11), 10644. doi: 10.1021/acsnano.7b07120.
- V. Bastos, P. Oskoei, E. Andresen, M.I. Saleh, B. Rühle, U. Resch-Genger, H. Oliveira Sci. Rep., 2022, 12(1), 3770. doi: 10.1038/s41598-022-07630-5.
- J. Shan, Y. Ju Nanotechnology, 2009, 20(27), 275603. doi: 10.1088/0957-4484/20/27/275603.
- M. Kraft, C. Würth, M. Kaiser, V. Muhr, T. Hirsch, U. Resch-Genger В The International Conference on Advanced Materials and Nanotechnology (NZ, Queenstown, 12–16 February. 2017), NZ, Queenstown, 2017. (https://opus4.kobv.de/opus4-bam/frontdoor index/index/docId/40093).
- A. Nadort, J. Zhao, E.M. Goldys Nanoscale, 2016, 8(27), 13099. doi: 10.1039/C5NR08477F.
- J.L. Sommerdijk, A. Bril Philips Tech. Rev., 1974, 34(1), 24.
- S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, D. Jin Nat. Commun., 2018, 9(1), 2415. doi: 10.1038/s41467-018-04813-5.
- M. Kraft, C. Würth, V. Muhr, T. Hirsch, U. Resch-Genger Nano Res., 2018, 11, 6360. doi: 10.1007/s12274-018-2159-9.
- D.N. Karimov, P.A. Demina, A.V. Koshelev, V.V. Rocheva, A.V. Sokovikov, A.N. Generalova, V.P. Zubov, E.V. Khaydukov,
- M.V. Koval’chuk, V.Ya. Panchenko Nanotechnol. Russ., 2020, 15(11–12), 655. doi: 10.1134/S1995078020060117.
- R. Naccache, Q. Yu, J.A. Capobianco Adv. Opt. Mater., 2015, 3(4), 482. doi: 10.1002/adom.201400628.
- C. Li, L. Xu, Z. Liu, Z. Li, Z. Quan, A.A. Al Kheraif, J. Lin Dalton Trans., 2018, 47(26), 8538. doi: 10.1039/c8dt00258d.
- Y. Min, X. Ding, B. Yu, Y. Shen, H. Cong Mater. Today Chem., 2023, 27, 101335. doi: 10.1016/j.mtchem.2022.101335.
- C. Homann, L. Krukewitt, F. Frenzel, B. Grauel, C. Würth, U. Resch‐Genger, M. Haase Angew. Chem. Int. Ed., 2018, 57(28), 8765. doi: 10.1002/anie.201803083.
- T. Rinkel, J. Nordmann, A.N. Raj, M. Haase Nanoscale, 2014, 6(23), 14523. doi: 10.1039/C4NR03833A.
- S. Dühnen, T. Rinkel, M. Haase Chem. Mater., 2015, 27(11), 4033. doi: 10.1021/acs.chemmater.5b01013.
- C. Ophus Microsc. Microanal., 2019, 25(3), 1. doi: 10.1017/S1431927619000497.
- T. Hamaoka, A. Hashimoto, K. Mitsuishi, M. Takeguchi e-J. Surf. Sci. Nanotech., 2018, 16, 247. doi: 10.1380/ejssnt.2018.247.
- S. Fang, Y. Wen, C.S. Allen, C. Ophus, G.G. Han, A.I. Kirkland, E. Kaxiras, J.H. Warner Nat. Commun., 2019, 10(1), 1127. doi: 10.1038/s41467-019-08904-9.
Arquivos suplementares
