On the Issue of Thermal Stability of Metallization Systems and Contacts of Ultra-Large Integrated Circuits
- Autores: Koryachko M.V.1, Nikolaev V.K.1, Pshonkin D.E.1, Skvortsov A.A.1
-
Afiliações:
- Moscow Polytechnic University
- Edição: Volume 118, Nº 3-4 (2023): ТЕМАТИЧЕСКИЙ БЛОК: ФУНДАМЕНТАЛЬНЫЕ НАУЧНЫЕ ИССЛЕДОВАНИЯ В ОБЛАСТИ ЕСТЕСТВЕННЫХ НАУК
- Páginas: 92-103
- Seção: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/302484
- DOI: https://doi.org/10.22204/2410-4639-2023-119-120-03-04-92-103
- ID: 302484
Citar
Texto integral
Resumo
The work is devoted to the development of a method for diagnosing thermal overloads of metallization systems of ultra-large integrated circuits. The considered metallization systems with a thickness of 0.5 μm with sublayers with a thickness of 0.1 μm (the width of the Al film was 7–70 μm) were exposed to single rectangular current pulses with a duration of no more than 600 μs and an amplitude of up to 8·1010 A/m2.Temperature fields were modeled using experimental oscillograms, melting processes in multilayer thin-film systems were analyzed. It was found that when exposed to a single rectangular current pulse with a duration not exceeding 80 μs and an energy of 85 mJ, the processes of melting of a metal film are the priority process of destruction of the structure. An increase in the pulse duration (τ>80 μs) changes the priority of thermal degradation, and contact melting becomes the main mechanism. It is shown that the presence of titanium and silicon oxide sublayers increases the thermal "load" on the metallization layers and can lead to a decrease in the critical current density. Using the example of the Al–Ti–Si system, it was revealed that isothermal annealing leads to an improvement in the heat-conducting properties of the system and an increase in critical current densities.
Palavras-chave
Sobre autores
Marina Koryachko
Moscow Polytechnic University
Autor responsável pela correspondência
Email: m.v.koryachko@gmail.com
Rússia, 38B Semenovskaya Str., Moscow, 107023, Russia
Vladimir Nikolaev
Moscow Polytechnic University
Email: nvk64@list.ru
Rússia, 38B Semenovskaya Str., Moscow, 107023, Russia
Danila Pshonkin
Moscow Polytechnic University
Email: cryo140401@gmail.com
Rússia, 38B Semenovskaya Str., Moscow, 107023, Russia
Arkady Skvortsov
Moscow Polytechnic University
Email: skvortsovaa2009@yandex.ru
Rússia, 38B Semenovskaya Str., Moscow, 107023, Russia
Bibliografia
- A.W. Topol, D.C. La Tulipe, Jr.L Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U. Singco, A.M. Young, K.W. Guarini, M. Ieong IBM J. Res. & Dev., 2006, 50(4.5), 491. doi: 10.1147/rd.504.0491.
- H. Okabe, M. Yoshida, T. Tominaga, J. Fujita, K. Endo, Y. Yokoyama, K. Nishikawa, Y. Toyoda, S. Yamakawa Materials Science Forum, 2014, 778, 955. doi: 10.4028/ href='www.scientific.net/MSF.778-780.955' target='_blank'>www.scientific.net/MSF.778-780.955.
- C. Zhang, S. Liu, S. Li, Y. Zhu, L. Ni IEEE Trans. Power Electron., 2022, 37(5), 6009. doi: 10.1109/TPEL.2021.3125428.
- D. Martineau, C. Levade, M. Legros, P. Dupuy, T. Mazeaud Microelectron. Reliab., 2014, 54(11), 2432. doi: 10.1016/j.microrel.2014.06.010.
- W. Macherzyński, A. Stafiniak, B. Paszkiewicz, J. Gryglewicz, R. Paszkiewicz Phys. Status Solidi, 2016, 213(5), 1145. doi: 10.1002/pssa.201532684.
- T.J. Garosshen, T.A. Stephenson, T.P. Slavin JOM, 1985, 37(5), 55. doi: 10.1007/BF03257742.
- S.M. Ahmad, Ch.S. Leong, R.W. Winder, K. Sopian, S.H. Zaidi J. Electron. Mater., 2019, 48(10), 6382. doi: 10.1007/s11664-019-07409-x.
- T.K. Gupta Microelectron. Reliab., 1979, 19(4), 337. doi: 10.1016/0026-2714(79)90150-1.
- M. Brincker, K.B. Pedersen, P.K Kristensen, V.N. Popok Microelectron. Reliab., 2015, 55(9–10), 1988. doi: 10.1016/j.microrel.2015.06.005.
- L. Fangwei, L. Pingan, Q. Hui, L. Junpeng, S. Ruochen, W. Wenchao Comput. Mater. Sci., 2019, 170, 109142. doi: 10.1016/j.commatsci.2019.109142.
- A.V. Pervikov, M.I. Lerner, O.V. Bakina, A.S. Lozhkomoev, E.A. Glazkova Inorg. Mater.: Appl. Research, 2019, 10(3), 699. doi: 10.1134/S2075113319030328.
- Y.S. Kwona, V.V. An, A.P. Ilyin, D.V. Tikhonov Mater. Lett., 2007, 61(14-15), 3247. doi: 10.1016/j.matlet.2006.11.047.
- P. Chucai, W. Jinxiang, Zh. Nan, S. Guilei Curr. Appl. Phys., 2016, 16(3), 284. doi: 10.1016/j.cap.2015.12.009.
- M. Nelhiebel, R. Illing, Th. Detzel, S. Wöhlert, B. Auer, S. Lanzerstorfer, M. Rogalli, W. Robl, S. Decker, J. Fugger, M. Ladurner Microelectron. Reliab., 2013, 53(9-11), 1745. doi: 10.1016/j.microrel.2013.07.123.
- E.S. Grinats, V.A. Zhbanov, A.V. Kashevarov, A.B. Miller, Yu.F. Potapov, A.L. Stasenko TVT, 2019, 57(2), 2019, 246. doi: 10.1134/S0018151X19020056.
- L. Hao, X. Xiao, X. Lin-sheng, W. Hua-lin, S. Gai-nai, Y. Qiang Chem. Eng. Sci., 2019, 195, 720. doi: 10.1016/j.ces.2018.10.017.
- A. Diligenti, P.E. Bagnoli, B. Neri, S. Bea, L. Mantellassi Solid-State Electron., 1989, 32(1), 11. doi: 10.1016/0038-1101(89)90042-7.
- A.A. Skvortsov, S.M. Zuev, M.V. Koryachko, V.V. Glinskiy Microelectron. Int., 2016, 33(2), 102. doi: 10.1108/MI-05-2015-0049.
- A.A. Skvortsov, M.V. Koryachko, S.I. Kuleshova, M.R. Rybakova J. Appl. Phys., 2022, 131(8), 083901. doi: 10.1063/5.0084330.
- A. Skvortsov, M. Koryachko, O. Sklemina, M. Rybakova Appl. Phys. A: Mater. Scien. & Process., 2022, 128(3), 242. doi: 10.1007/s00339-022-05398-z.
- A.A. Skvortsov, S.M. Zuev, M.V. Koryachko, E.B. Voloshinov Tekhnologiya Metallov [Metal Technology], 2019, 11, 41 (in Russian). doi: 10.31044/1684-2499-2019-11-0-41-46.
- A.A. Skvortsov, S.M. Zuev, M.V. Koryachko, A.A. Skvortsova Periodico Tche Quimica, 2019, 16(33), 448. doi: 10.52571/PTQ.v16.n33.2019.463_Periodico33_pgs_448_456.pdf.
- A.A. Skvortsov, M.V. Koryachko, S.M. Zuev, M.R. Rybakova Periodico Tche Quimica, 2020, 17(34), 335. doi: 10.52571/PTQ.v17.n34.2020.352_P34_pgs_335_342.pdf.
Arquivos suplementares
