Fundamental Research and Development of Key Materials in New High-Performance Alkaline Membrane Fuel Cells
- Authors: Bulanova A.V.1, Shafigulin R.V.1, Bogdanovskaya V.A.2, Vinogradov K.Y.1, Andreev V.N.2, Tokranova E.O.1, Korchagin O.V.2, Vostrikov S.V.3
-
Affiliations:
- Samara National Research University
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- Samara State Technical University
- Issue: Vol 128, No 4 (2025): THEMED SECTION: BRICS – ENVIRONMENTAL ISSUES
- Pages: 107-133
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/372862
- DOI: https://doi.org/10.22204/2410-4639-2025-128-04-107-133
- ID: 372862
Cite item
Full Text
Abstract
The research, part of an international collaboration between BRICS countries, was conducted by scientists from S.P. Korolev Samara National Research University, the A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences (Russia), Beijing University of Chemical Technology, China, and the International Advanced Research Center for Powder Metallurgy and New Materials (India). This article presents the key results of the Russian team’s research on the development of catalysts with minimal platinum content, as well as non-platinum catalysts for alkaline fuel cells (AFCs) operating in the oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR). Carbon materials were used as supports, and the influence of the nature of the carbon supports, dopants, and modifiers (platinum, molybdenum, silver, palladium, iron, nickel, cobalt, etc.) on the catalytic performance of the resulting materials in ORR and HOR was studied.
Testing the synthesized catalysts in an electrochemical cell showed that the catalyst based on mesoporous carbon modified with 7% palladium (SMK-3_Pd) is comparable in performance to a commercial platinum catalyst containing 40% Pt and exhibits high corrosion resistance
About the authors
Andzhela V. Bulanova
Samara National Research University
Author for correspondence.
Email: shafiro@mail.ru
Professor
Russian Federation, 34, Moskovskoye shosse, Samara, 443086Roman V. Shafigulin
Samara National Research University
Email: shafiro@mail.ru
Russian Federation, 34, Moskovskoye shosse, Samara, 443086
Vera A. Bogdanovskaya
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: bogdanovsk@mail.ru
Russian Federation, 31 (4), Leninsky Prospekt, Moscow, 119071
Kirill Yu. Vinogradov
Samara National Research University
Email: winyur@yandex.ru
Russian Federation, 34, Moskovskoye shosse, Samara, 443086
Vladimir N. Andreev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: 6337624@mail.ru
Russian Federation, 31 (4), Leninsky Prospekt, Moscow, 119071
Elena O. Tokranova
Samara National Research University
Email: fileona@mail.ru
Russian Federation, 34, Moskovskoye shosse, Samara, 443086
Oleg V. Korchagin
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: oleg-kor83@mail.ru
Russian Federation, 31 (4), Leninsky Prospekt, Moscow, 119071
Sergey V. Vostrikov
Samara State Technical University
Email: vosser@mail.ru
Head of Department
Russian Federation, 244, Molodogvardeyskaya st., Samara, 443100References
- W.R.W. Daud et al. Renew. Energy, 2017, 113, 620–638. doi: 10.1016/j.renene.2017.06.027.
- Y. Wang et al. Mater. today, 2020, 32, 178–203. doi: 10.1016/j.mattod.2019.06.005.
- W.J. Zeng et al. J. Electroanal. Chem., 2022, 922, 116728. doi: 10.1016/j.jelechem.2022.116728.
- W.S. Jung et al. J. Electrochem. Soc., 2022, 169(7), 074501. doi: 10.1149/1945-7111/ac7827.
- P. Chandran et al. Sci. Rep., 2018, 8(1), 3591. doi: 10.1038/s41598-018-22001-9.
- M.R. Tarasevich, E.S. Davydova Russ. J. Electrochem., 2016, 52, 193–219. doi: 10.1134/S1023193516030113.
- W. Wang et al. Adv. Sci., 2017, 4(4), 1600486. doi: 10.1002/advs.201600486.
- T. Maiyalagan et al. J. Phys. Chem. C, 2012, 116(3), 2630–2638. doi: 10.1021/jp210266n.
- C. Ruiz-García et al. Ind. Eng. Chem. Res., 2019, 58(11), 4355–4363. doi: 10.1021/acs.iecr.8b06084.
- X. Tan et al. RSC Adv., 2018, 8(59), 33688–33694. doi: 10.1039/C8RA07248E.
- H. Zhu et al. Nano lett., 2013, 13(6), 2947–2951. doi: 10.1021/nl401325u.
- C. Guo et al. Nanoscale Res. Lett., 2020, 15, 1–14. doi: 10.1186/s11671-020-3254-x.
- Y.N. Zaitseva et al. J. Sib. Fed. Univ. Chem., 2019, 12(3), 395–404. doi: 10.17516/1998-2836-0136.
- V. Vij et al. ACS Catal., 2017, 7(10), 7196–7225. doi: 10.1021/acscatal.7b01800.
- Y. Zhao et al. Catalysts, 2018, 8(2), 53. doi: 10.3390/catal8020053.
- R.B. Patil et al. ACS Appl. Energy Mater., 2019, 2(4), 2524–2533. doi: 10.1021/acsaem.8b02087.
- A. Laszczyńska et al. Int. J. Hydrog. Energy, 2021, 46(44), 22813–22831. doi: 10.1016/j.ijhydene.2021.04.103.
- J. Sun et al. Sustain. Energy Fuels, 2020, 4(9), 4531–4537. doi: 10.1039/D0SE00694G.
- T. Lopes et al. ChemElectroChem, 2016, 3(10), 1580–1590. doi: 10.1002/celc.201600354.
- V.M. Truong et al. Int. J. Precis. Eng. Manuf.-Green Technol., 2019, 6(4), 711–721. doi: 10.1007/s40684-019-00123-3.
- B. Ruiz-Camacho et al. Int. J. Hydrog. Energy, 2022, 47(70), 30147–30159. doi: 10.1016/j.ijhydene.2022.03.190.
- Y. Liu et al. RSC Adv., 2016, 6(39), 32676–32684. doi: 10.1039/C6RA00752J.
- G. Wu et al. J. Chin. Chem. Soc., 2020, 67(7), 1189–1194. doi: 10.1002/jccs.201900429.
- R. Ning et al. Langmuir, 2013, 29(43), 13146–13151. doi: 10.1021/la4031014.
- T. Van Hung et al. J. Phys. D: Appl. Phys., 2020, 54(8), 085303. doi: 10.1088/1361-6463/abc6d6.
- A. Eftekhari, Z. Fan Mater. Chem. Front., 2017, 1(6), 1001–1027. doi: 10.1039/C6QM00298F.
- W. Xu et al. J. Mater. Chem. A, 2016, 4(42), 16272–16287. doi: 10.1039/C6TA05304A.
- B. Hasse et al. Catal. Today, 2015, 249, 30–37. doi: 10.1016/j.cattod.2014.10.049.
- Y. Wang et al. Sep. Purif. Technol., 2013, 106, 32–37. doi: 10.1016/j.seppur.2012.12.013.
- Z. Zhao et al. Adv. Mater., 2015, 27(43), 6834–6840. doi: 10.1002/adma.201503211.
- Y. Kado et al. J. Solid State Electrochem., 2019, 23, 1061–1081. doi: 10.1007/s10008-019-04211-x.
- D. Wu et al. Nanotechnology, 2017, 28(43), 435503. doi: 10.1088/1361-6528/aa89b5.
- S. Song et al. Inorg. Chem., 2021, 60(10), 7498–7509. doi: 10.1021/acs.inorgchem.1c00824.
- B. Han et al. Int. J. Hydrogen Energy, 2020, 45(54), 29645–29654. doi: 10.1016/j.ijhydene.2019.09.123.
- E.A. Martynenko et al. J. Appl. Electrochem., 2023, 53(4), 645–659. doi: 10.1007/s10800-022-01808-5.
- A.V. Bulanova et al. Catalysts, 2022, 12(9), 1013. doi: 10.3390/catal12091013.
- I.E. Vernigor et al. Russ. J. Electrochem., 2023, 59(1), 12–23. doi: 10.1134/S1023193523010111.
Supplementary files

