Development and Research of Reconfi gurable High-Speed Image Recognition Algorithms for Traffi c Situation Assessment Based on Specialized Mobile Devices with Parallel-Pipeline Architecture

Capa

Citar

Texto integral

Resumo

The article summarizes the results of studying the use of reconfigurable computing environments for image processing tasks obtained on board unmanned transport systems. A new approach was proposed to the development of specialized, high-speed algorithms for recognizing images of a road scene, designed for hardware execution on computers with a parallel-pipeline architecture based on the model of reconfigurable computing environments. The architecture and algorithmic tooling of such environments for traffic situation assessment problems are considered. A new class of image recognition algorithms based on the calculation of LBP, HOG descriptors and the SVM classifier has been formed. It is shown that calculations of HOG descriptors in the layer of a reconfigurable computing environment are performed in one machine cycle for the entire image, and the execution time, when implemented on an Intel Arria 10 FPGA, does not exceed 20 ns.

Sobre autores

Stanisalv Shidlovskiy

Tomsk State University

Autor responsável pela correspondência
Email: shidlovskiysv@mail.ru
Rússia, 36 Lenin Ave., Tomsk, 634050, Russia

Dmitry Shashev

Tomsk State University

Email: dshashev@mail.tsu.ru
Rússia, 36 Lenin Ave., Tomsk, 634050, Russia

Anton Bondarchuk

Tomsk State University

Email: bondarchuk.a.c@gmail.com
Rússia, 36 Lenin Ave., Tomsk, 634050, Russia

Vladislav Shatravin

Tomsk State University

Email: shatravin@stud.tsu.ru
Rússia, 36 Lenin Ave., Tomsk, 634050, Russia

Mihail Okunskiy

Tomsk State University

Email: iamleftbrain@gmail.com
Rússia, 36 Lenin Ave., Tomsk, 634050, Russia

Bibliografia

  1. K. Aizawa, K. Sakaue, Y. Suenaga Image Processing Technologies. Algorithms, Sensors and Applications, USA, NY, New-York, Marcel Dekker, 2004, 282 pp.
  2. D.G. Bailey Design for Embedded Image Processing on FPGAs, SG, Singapore, John Wiley & Sons, 2011, 482 pp.
  3. M. Fularz, M. Kraft, A. Schmidt, A. Kasiński Int. J. Adv. Robot. Syst., 2015, 12, 1. doi: 10.5772/61434.
  4. P. Garcia-Risueno, P.E. Ibanez Int. J. Mod. Phys., 2012, 23(7), 1230001. doi: 10.1142/S0129183112300011.
  5. S. Saxena, N. Sharma, S. Sharma Int. J. Adv. Res. Comp. Commun. Engin., 2013, 2(4), 1896. doi: 10.17148/IJARCCE.2013.2420.
  6. I.A. Kalyaev, I.I. Levin, E.A. Semernikov, V.I. Shmoilov Reconfigurable Multi-Pipeline Computing Structures [Rekonfiguriruemye multikonveyernye vychislitelnye struktury], RF, Rostov-on-Don, SSC RAS, 2008, 393 pp. (in Russian).
  7. M.S. Kocherga, V.I. Shmoilov Vestnik UNTs RAN [Bulletin of South Scientific Centre of RAS], 2008, 4(2), 18. (in Russian).
  8. A. Konovalchik Modern Automation Technologies [Sovremennye tekhnologii avtomatizatsii], 2013, 3, 70. (in Russian).
  9. Y. Jiang, S. Liu, H. Zhang, X. Kong Optics Communications, 2014, 332, 359. doi: 10.1016/J.OPTCOM.2014.07.038.
  10. C. Shi, J. Yang, Y. Han, Z. Cao, Q. Qin, L. Liu, N.-J. Wu, Z. Wang In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, 57, 128. doi: 10.1109/ISSCC.2014.6757367.
  11. V.M. Khachumov, A.Yu. Popkov, I.V. Sochenkov In Proc. National Supercomputing Forum (NSCF-2020) [Sbornik tezisov dokladov Tretego Nacionalnogo Superkompyuternogo Foruma (NSKF-2014)], RF, Pereslavl-Zalessky, Program Systems Institute of the RAS, 2014, pp. 13–17 (in Russian).
  12. N. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley et al. In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), 2017, 1. doi: 10.1145/3079856.3080246.
  13. S. Lie IEEE Micro, 2023, 43(3), 18. doi: 10.1109/MM.2023.3256384.
  14. S. Chun, T. Kuo, H. Tsai, C. Liu, C. Wang, J. Hsieh, T. Lin, T. Ku, D.C. Yu In 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), USA, FL, Orlando, 2020, pp. 1–6. doi: 10.1109/ECTC32862.2020.00013.
  15. N. Dey, G. Gosal, H. Khachane, W. Marshall, R. Pathria, M. Tom, J. Hestness arXiv:2304.03208, 2023, 1. doi: 10.48550/arXiv.2304.03208.
  16. E. Talpes, D.D. Sarma, D.F. Williams, S. Arora, T. Kunjan, B. Floering, A. Jalote, C. Hsiong, C. Poorna, V. Samant, J. Sicilia, A.K. Nivarti, R. Ramachandran, T. Fischer, B. Herzberg, B. McGee et al. IEEE Micro, 2023, 43(3), 31. doi: 10.1109/MM.2023.3258906.
  17. D.V. Shashev, A.S. Bondarchuk Tomsk State University Journal of Control and Computer Science [Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaya tekhnika i informatika], 2023, 65, 116 (in Russian). doi: 10.17223/19988605/65/12.
  18. D.V. Shashev, A.A. Taganov, M. Mondal, M.V. Okunsky J. Phys.: Conf. Ser, 2020, 1611, 012070. doi: 10.1088/1742-6596/1611/1/012070.
  19. A.S. Bondarchuk, D.V. Shashev, S.V. Shidlovskiy In Proc. Distributed Computer and Communication Networks: 24th International Conference, DCCN 2021 (RF, Moscow, 20–24 September, 2021), Ser. Communications in Computer and Information Science (CCIS), Eds V.M. Vishnevskiy, K.E. Samouylov and D.V. Kozyrev, FRG, Cham, Springer, 2022, 1552, pp. 408–419. doi: 10.1007/978-3-030-97110-6_32.
  20. N. Attarmoghaddam, K.F. Li IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(4), 2306. doi: 10.1109/TCSII.2022.3148228.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Shidlovskiy S.V., Shashev D.V., Bondarchuk A.S., Shatravin V.V., Okunskiy M.V., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).