Study of Methods for Anisotropic Plasma-Chemical Etching of Low-k Layers with Protection of the Porous Structure of the Material
- Authors: Miakonkikh A.V.1, Gaidukasov R.A.1, Kuzmenko V.O.1
-
Affiliations:
- Valiev Institute of Physics and Technology, RAS
- Issue: Vol 118, No 2 (2023): THEMED SECTION: FUNDAMENTAL PROBLEMS OF MULTILEVEL METALLIZATION SYSTEMS FOR ULTRA-LARGE INTEGRATED CIRCUITS
- Pages: 88-94
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/301146
- DOI: https://doi.org/10.22204/2410-4639-2023-118-02-88-94
- ID: 301146
Cite item
Full Text
Abstract
The article summarizes the results of studying the processes of cryogenic plasma etching of low-k dielectrics for use in integrated circuit metallization systems with a node less than 10 nm. The mechanisms of film degradation during plasma etching are considered, and an approach based on the adsorption of condensed plasma-forming gas in pores is studied. Experimental results are presented concerning the development and application of methods for controlling the filling of film pores in situ. The results of studying the parameters of the plasma of bromine-containing gases (CF3Br and C2F4Br2) and the nature of the degradation of the chemical composition of films after etching are presented. For comparison, the same characteristics are given for the previously used CF4 plasma.
About the authors
Andrey V. Miakonkikh
Valiev Institute of Physics and Technology, RAS
Author for correspondence.
Email: miakonkikh@ftian.ru
Russian Federation, 34 Nakhimovsky Ave., Moscow, 117218, Russia
Rafael A. Gaidukasov
Valiev Institute of Physics and Technology, RAS
Email: gaydukasov.r@gmail.com
Russian Federation, 34 Nakhimovsky Ave., Moscow, 117218, Russia
Vitaly O. Kuzmenko
Valiev Institute of Physics and Technology, RAS
Email: kuzmenko@ftian.ru
Russian Federation, 34 Nakhimovsky Ave., Moscow, 117218, Russia
References
- W. Volksen, R.D. Miller, G. Dubois Chem. Rev., 2010, 110(1), 56. doi: 10.1021/cr9002819.
- D. Shamiryan, M.R. Baklanov, S. Vanhaelemeersch, K. Maex J. Vac. Sci. Technol. B, 2002, 20(5), 1923. doi: 10.1116/1.1502699.
- A. Rezvanov, A.V. Miakonkikh, A.S. Vishnevskiy, K.V. Rudenko, M.R. Baklanov J. Vac. Sci. Technol. B, 2017, 35(2), 021204. doi: 10.1116/1.4975646.
- A. Zotovich, A. Rezvanov, R. Chanson, L. Zhang, N. Hacker, K. Kurchikov, S. Klimin, S.M. Zyryanov, D. Lopaev, E. Gornev, I. Clemente, A. Miakonkikh, K. Maslakov J. Phys. D, 2018, 51(32), 325202. doi: 10.1088/1361-6463/aad06d.
- A.A. Rezvanov, A.V. Miakonkikh, D.S. Seregin, A.S. Vishnevskiy, K.A. Vorotilov, K.V. Rudenko, M.R. Baklanov J. Vac. Sci. Technol. A, 2020, 38(3), 033005. doi: 10.1116/1.5143417.
- A. Miakonkikh, V. Kuzmenko, A. Efremov, K. Rudenko Vacuum, 2022, 200(5), 110991. doi: 10.1016/j.vacuum.2022.110991.
- H.G. Tompkins A User's Guide to Ellipsometry, USA, NY, New York, Academic Press, 1993, 260 pp. doi: 10.1016/C2009-0-22336-1.
- V. Rouessac, A. Lee, F. Bosc, J. Durand, A. Ayral Micropor. Mesopor. Mater., 2008, 111(1–3), 417. doi: 10.1016/j.micromeso.2007.08.033.
- T. Li, A.J. Senesi, B. Lee Chem. Rev., 2016, 116(18), 11128. doi: 10.1021/acs.chemrev.5b00690.
- D.W. Gidley, H.-G. Peng, R.S. Vallery Annu. Rev. Mater. Res., 2006, 36(1), 49. doi: 10.1146/annurev.matsci.36.111904.135144.
- A.A. Orlov, A.A. Rezvanov, A.V. Miakonkikh Nanoindustry Russ., 2020, 96(3s), 684. doi: 10.22184/1993-8578.2020.13.3s.684.687.
- S. Matsuo Appl. Phys. Lett., 1980, 36(9), 768. doi: 10.1063/1.91651.
- M. Engelhardt, S. Schwarz J. Electrochem. Soc., 1987, 134, 1985. doi: 10.1149/1.2100803.
- D.L. Flamm, P.L. Cowan, J.A. Golovchenko J. Vac. Sci. Tech., 1980, 17, 1341. doi: 10.1116/1.570667.
- D.V. Lopaev, Yu.A. Mankelevich, T.V. Rakhimova, A.I. Zotovich, S.M. Zyryanov, M.R. Baklanov J. Phys. D: Appl. Phys., 2017, 50, 485202. doi: 10.1088/1361-6463/aa92a7.
- S.V. Avtaeva, D.K. Otorbaev J. Phys. D: Appl. Phys., 1993, 26, 2148. doi: 10.1088/0022-3727/26/12/009.
Supplementary files
