Multispectral Enhancement and Detection of IR Absorption in Semiconductor and Organic Nanostructures on Metal Nanoantenna Arrays
- Authors: Milekhin A.G.1, Basalaeva L.S.1, Kurus N.N.1, Kuznetsov S.A.2, Rodyakina E.E.1, Milekhin I.A.3, Vasiliev R.B.4, Gutakovskii A.K.1
-
Affiliations:
- Rzhanov Institute of Semiconductor Physics, SB RAS
- Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk Branch “TDIAM”
- Novosibirsk State University
- Lomonosov Moscow State University
- Issue: Vol 117, No 1 (2023): ТЕМАТИЧЕСКИЙ БЛОК: СОВРЕМЕННЫЕ ПРОБЛЕМЫ ФОТОНИКИ ИНФРАКРАСНОГО ДИАПАЗОНА
- Pages: 109-121
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/299567
- DOI: https://doi.org/10.22204/2410-4639-2023-117-01-109-121
- ID: 299567
Cite item
Full Text
Abstract
We report on the study of surface-enhanced IR absorption at the frequencies of optical vibrational modes in semiconductor nanocrystals and organic films of monolayer thickness deposited on arrays of gold nanoantennas.
The structural parameters of nanoantennas are chosen in such a way as to ensure the interaction of vibrational modes with localized surface plasmon resonances (LSPR) arising in arrays of metallic (Au) nanoantennas under external electromagnetic radiation. Using the 3D electrodynamic modeling, the relationship between the structural parameters of plasmon arrays and their LSPR frequencies has been established. Arrays of plasmonic linear and H-shaped nanoantennas were fabricated using nanolithography. The LSPR frequencies of the plasmon structures are determined from the analysis of IR transmission spectra, which strongly depend on the morphology of metallic nanostructures and vary in a wide spectral range depending on the aspect ratio of geometric dimensions. The results of a comparative analysis of the enhancement of the IR absorption by optical phonons of nanocrystals
deposited on arrays of nanoantennas on the Si, SiO2 surface, and SiO2 pedestal are presented. The possibility of implementing an optical sensor containing nanoantenna arrays and possessing several LSPRs for selective detection of a small amount of matter is shown.
About the authors
Alexander G. Milekhin
Rzhanov Institute of Semiconductor Physics, SB RAS
Author for correspondence.
Email: milekhin@isp.nsc.ru
Russian Federation, 13 Lavrentiev Ave., Novosibirsk, 630090, Russia
Lyudmila S. Basalaeva
Rzhanov Institute of Semiconductor Physics, SB RAS
Email: basalaeva@isp.nsc.ru
Russian Federation, 13 Lavrentiev Ave., Novosibirsk, 630090, Russia
Nina N. Kurus
Rzhanov Institute of Semiconductor Physics, SB RAS
Email: kurus@isp.nsc.ru
Russian Federation, 13 Lavrentiev Ave., Novosibirsk, 630090, Russia
Sergei A. Kuznetsov
Rzhanov Institute of Semiconductor Physics SB RAS,Novosibirsk Branch “TDIAM”
Email: sakuznetsov@nsu.ru
Russian Federation, 2/1 Lavrentiev Ave., Novosibirsk, 630090, Russia
Ekaterina E. Rodyakina
Rzhanov Institute of Semiconductor Physics, SB RAS
Email: rodyakina@isp.nsc.ru
Russian Federation, 13 Lavrentiev Ave., Novosibirsk, 630090, Russia
Ilya A. Milekhin
Novosibirsk State University
Email: i.milekhin@g.nsu.ru
Russian Federation, 1 Pirogova Str., Novosibirsk, 630090, Russia
Roman B. Vasiliev
Lomonosov Moscow State University
Email: romvas@inorg.chem.msu.ru
Russian Federation, 1 Leninskie Gory, Moscow, 119991, Russia
Anton K. Gutakovskii
Rzhanov Institute of Semiconductor Physics, SB RAS
Email: gut@isp.nsc.ru
Russian Federation, 13 Lavrentiev Ave., Novosibirsk, 630090, Russia
References
- L.H. Little. Infrared Spectra of Adsorbed Species. UK, London: Academic Press Inc., 1966. 428 pp. doi: 10.1016/0022-2860(68)87063-2.
- F.M. Hoffmann. Surf. Sci. Rep., 1983, 3, 109. doi: 10.1016/0167-5729(83)90001-8.
- M. Osawa. In Handbook of Vibrational Spectroscopy, eds. J.M. Chalmers, P.R. Griffiths. USA, NY, New York: John Wiley and Sons, 2002. 785 pp.
- R. Aroca. Surface Enhanced Vibrational Spectroscopy. USA, New Jersey: John Wiley & Sons, 2006. 233 pp. doi: 10.1002/9780470035641.
- A. Hartstein, J.R. Kirtley, J.C. Tsang. Phys. Rev. Lett., 1980, 45, 201. doi: 10.1103/PhysRevLett.45.201.
- M. Osawa. In Near-Field Optics and Surface Plasmon Polaritons, Ser. Topics in Applied Physics, Vol. 81, ed. S. Kawata. FRG, Berlin, Heidelberg: Springer Verlag, 2001, pp. 163–187. doi: 10.1007/3-540-44552-8_9.
- Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications, eds. M.L. de la Chapelle, A. Pucci. USA, NY, New York: Jenny Stanford Publishing, 2013. 452 pp. doi: 10.1201/b14594.
- P. Biagioni, J.-S. Huang, B. Hecht. Rep. Prog. Phys., 2012, 75, 024402-1-40. doi: 10.1088/0034-4885/75/2/024402.
- L. Razzari et al. Plasmonics, 2013, 8, 133. doi: 10.1007/s11468-012-9439-0.
- C. D’Andrea et al. ACS Nano, 2013, 7, 3522. doi: 10.1021/nn4004764.
- S. Aksu et al. Nano Lett., 2010, 10, 2511. doi: 10.1021/nl101042a.
- F. Neubrech et al. Phys. Rev. Lett., 2008, 101, 157403. doi: 10.1103/PhysRevLett.101.157403.
- R. Adato et al. Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 19227. doi: 10.1073/pnas.0907459106.
- D. Dregely et al. Nat. Commun., 2013, 4, 2237. doi: 10.1038/ncomms3237.
- D.-K. Lee et al. Sci. Rep., 2015, 5, 15459. doi: 10.1038/srep15459.
- A. Toma et al. Nano Lett., 2015, 15, 386. doi: 10.1021/nl503705w.
- A.G. Milekhin et al. Beilstein J. Nanotechnol., 2017, 8, 975. doi: 10.3762/bjnano.8.99.
- A.G. Milekhin et al. J. Phys. Chem. C, 2017, 121(10), 5779. doi: 10.1021/acs.jpcc.6b11431.
- I.A. Milekhin et al. Beilstein J. Nanotechnol., 2016, 7, 1519. doi: 10.3762/bjnano.7.145.
- F. Neubrech et al. ACS Nano, 2014, 8(6), 6250. doi: 10.1021/nn5017204.
- D. Weber et al. Opt. Express, 2011, 19(16), 15047. doi: 10.1364/OE.19.015047.
- F. Neubrech et al. Chem. Rev., 2017, 117, 5110. doi: 10.1021/acs.chemrev.6b00743.
- K. Chen, R. Adato, H. Altug. ACS Nano, 2012, 6(9), 7998. doi: 10.1021/nn3026468.
- N.A. Yeryukov et al. Thin Solid Films, 2013, 543, 35. doi: 10.1016/j.tsf.2013.03.070.
- N.N. Kurus et al. J. Phys. Chem. C, 2022, 126(16), 7107. doi: 10.1021/acs.jpcc.2c00276.
- D.A. Kurtina et al. RFBR Journal (Vestnik RFFI), 2019, 3(103), 26. doi: 10.22204/2410-4639-2019-103-03-26-34.
- A.G. Milekhin et al. J. Phys. Chem. C, 2012, 116, 17164. doi: 10.1021/jp210720v.
- ASYS HFSS. https://www.ansys.com/products/electronics/ansys-hfss.
- B.A. Munk. Frequency Selective Surfaces: Theory and Design. USA, NY, New York: John Wiley & Sons, 2000. 440 pp.
- Handbook of Optical Constants of Solids in 5 Vols, vol. 3, ed. E.D. Palik. USA, MA, Cambridge: Elsevier Inc., Academic Press, 1998. 999 pp.
- M.A. Ordal et al. Appl. Opt., 1983, 22, 1099. doi: 10.1364/ao.22.001099.
Supplementary files
