Optical Properties of Two-Dimensional Layered Structures in the Infrared Range

Cover Page

Cite item

Full Text

Abstract

Infrared optics is extremely widespread in modern science and technology. Almost all telecommunications equipment operates in the infrared range, thermal radiation is also most pronounced in the infrared region of the spectrum. Night vision devices are based on its detection. Therefore, infrared radiation plays an important role in nearfield radiative heat transfer and is also used in spectroscopy and many other scientific applications. In recent years, advanced nanostructuring techniques aimed at manipulating light at the nanoscale have become widespread. In particular, photonic crystals, metasurfaces and nanoresonators are actively used. In this work, we consider the possibilities of using two-dimensional layered structures in the optical and infrared ranges. In particular, we consider the possibility of using Dyakonov surface waves in confined media, as well as collective resonances in the lattices of plasmonic nanoparticles. Both types of structures make it possible to localize light on the submicroscale, enhance the interaction of light with matter, and effectively control the propagation of electromagnetic waves.

About the authors

Ilya M. Fradkin

Skolkovo Institute of Science and Technology

Author for correspondence.
Email: Ilia.Fradkin@skoltech.ru
Russian Federation, 30-1 Bolshoy Blvrd, Moscow, 121205, Russia

Dmitry A. Chermoshentsev

Russian Quantum Center, LLC

Email: dac@rqc.ru
Russian Federation, 30-1 Bolshoy Blvrd, Moscow, 121205, Russia

Evgeny V. Anikin

Russian quantum center

Email: evgenii.anikin@skoltech.ru
Russian Federation, 30-1 Bolshoy Blvrd, Moscow, 121205, Russia

Sergey A. Dyakov

Skolkovo Institute of Science and Technology

Email: s.dyakov@skoltech.ru
Russian Federation, 30-1 Bolshoy Blvrd, Moscow, 121205, Russia

Nikolay A. Gippius

Skolkovo Institute of Science and Technology

Email: n.gippius@skoltech.ru

Professor

Russian Federation, 30-1 Bolshoy Blvrd, Moscow, 121205, Russia

References

  1. H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Ser. Springer Tracts in Modern Physics. FRG: Berlin, Heidelberg: Springer-Verlag, 1988. P. 78. doi: 10.1007/bfb0048317.
  2. A.P. Vinogradov, A.V. Dorofeenko, A.M. Merzlikin, A.A. Lisyansky Phys.-Usp., 2010, 53(3), 243, doi: 10.3367/UFNe.0180.201003b.0249.
  3. S. A. Dyakov, A. Baldycheva, T. S. Perova, G. V. Li, E. V. Astrova, N. A. Gippius, S. G. Tikhodeev. Phys. Rev. B, 2012, 86, 115126. doi: 10.1103/PhysRevB.86.115126.
  4. Ya. V. Kartashov, V. A. Vysloukh, L. Torner. Phys. Rev. Lett., 2006, 96(7), 073901. doi: 10.1103/PhysRevLett.96.073901.
  5. M.I. Diyakonov Sov. Phys. JETP, 1988, 67(4), 714.
  6. D. B. Walker, E. N. Glytsis, T. K. Gaylord. J. Opt. Soc. Am. A, 1998, 15(1), 248. doi: 10.1364/josaa.15.000248.
  7. S. Yu. Karpov. Phys. Status Solidi B, 2019, 256(3), 1800609. doi: 10.1002/pssb.201800609.
  8. M.V. Zakharchenko, G.F. Glinskii Technical Physics, 2022, 67(11), 1489. doi: 10.21883/TP.2022.11.55180.140-22.
  9. O. Takayama, L. Crasovan, D. Artigas, L. Torner. Phys. Rev. Lett., 2009, 102(4), 2. doi: 10.1103/PhysRevLett.102.043903.
  10. O. Takayama, D. Artigas, L. Torner. Nat. Nanotechnol., 2014, 9(6), 419. doi: 10.1038/nnano.2014.90.
  11. F. Chiadini, V. Fiumara, A. Scaglione, A. Lakhtakia. J. Opt. Soc. Am. B, 2016, 33(6), 1197. doi: 10.1364/josab.33.001197.
  12. D. Artigas, L. Torner. Phys. Rev. Lett., 2005, 94(1), 013901. doi: 10.1103/PhysRevLett.94.013901.
  13. O. Takayama, D. Artigas, L. Torner. Opt. Lett., 2012, 37(11), 1983. doi: 10.1364/OL.37.001983.
  14. V. Kajorndejnukul, D. Artigas, L. Torner. Phys. Rev. B, 2019, 100(19), 1. doi: 10.1103/PhysRevB.100.195404.
  15. K. Yu. Golenitskii, A. A. Bogdanov. Phys. Rev. B, 2020, 101(16), 165434. doi: 10.1103/PhysRevB.101.165434.
  16. D. A. Chermoshentsev, E. V. Anikin, S. A. Dyakov, N. A. Gippius. Nanophotonics, 2020, 9(16), 4785. doi: 10.1515/nanoph-2020-0459.
  17. E. V. Anikin, D. A. Chermoshentsev, S. A. Dyakov, N. A. Gippius. Phys. Rev. B, 2020, 102(16), 161113. doi: 10.1103/PhysRevB.102.161113.
  18. N. S. Averkiev, M. I. Dyakonov. Opt. Spectrosc., 1990, 68, 653.
  19. O. Takayama, A. Yu. Nikitin, L. Martin-Moreno, L. Torner, D. Artigas. Opt. Express, 2011, 19(7), 6339. doi: 10.1364/oe.19.006339.
  20. L. Li. J. Opt. A: Pure Appl. Opt., 2003, 5(4), 345. doi: 10.1088/1464-4258/5/4/307.
  21. T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, H. Giessen. Opt. Express, 2009, 17(10), 8051. doi: 10.1364/OE.17.008051.
  22. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, T. Ishihara. Phys. Rev. B, 2002, 66, 045102. doi: 10.1103/PhysRevB.66.045102.
  23. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Zh.-K. Zhou, X. Wang, Ch. Jin, J. Wang. Nature Commun., 2013, 4(1), 2381. doi: 10.1038/ncomms3381.
  24. A. Poddubny, I. Iorsh, P. Belov, Yu. Kivshar. Nature Photon., 2013, 7(12), 948. doi: 10.1038/nphoton.2013.243.
  25. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, A. V. Kildishev. Opt. Lett., 2005, 30(24), 3356. doi: 10.1364/OL.30.003356.
  26. B. B. Rajeeva, L. Lin, Yu. Zheng. Nano Res., 2018, 11(9), 4423. doi: 10.1007/s12274-017-1909-4.
  27. A. Vaskin, R. Kolkowski, A. F. Koenderink, I. Staude. Nanophotonics, 2019, 8(7), 1151. doi: 10.1515/nanoph-2019-0110.
  28. A. H. Schokker, F. van Riggelen, Ya. Hadad, A. Alù, A. F. Koenderink. Phys. Rev. B, 2017, 95(8), 085409. doi: 10.1103/PhysRevB.95.085409.
  29. F. J. G. de Abajo. Rev. Mod. Phys., 2007, 79, 1267. doi: 10.1103/RevModPhys.79.1267.
  30. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, T. Ishihara. Phys. Rev. B, 2002, 66(4), 045102. doi: 10.1103/PhysRevB.66.045102.
  31. S. Baur, S. Sanders, A. Manjavacas. ACS Nano, 2018, 12(2), 1618. doi: 10.1021/acsnano.7b08206.
  32. A. Berkhout, A. F. Koenderink. ACS Photonics, 2019, 6(11), 2917. doi: 10.1021/acsphotonics.9b01019.
  33. I. M. Fradkin, S. A. Dyakov, N. A. Gippius. Phys. Rev. B, 2019, 99(7), 075310. doi: 10.1103/PhysRevB.99.075310.
  34. I. M. Fradkin, S. A. Dyakov, N. A. Gippius. Phys. Rev. B, 2020, 102(4), 045432. doi: 10.1103/PhysRevB.102.045432.
  35. I. M. Fradkin, S. A. Dyakov, N. A. Gippius. Phys. Rev. Applied, 2020, 14(5), 054030. doi: 10.1103/PhysRevApplied.14.054030.
  36. I. M. Fradkin, A. A. Demenev, V. D. Kulakovskii, V. N. Antonov, N. A. Gippius. Appl. Phys. Lett., 2022, 120(17), 171702. doi: 10.1063/5.0085786.
  37. P. A. Belov, K. R. Simovski. Phys. Rev. E, 2005, 72, 026615. doi: 10.1103/PhysRevE.72.026615.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Fradkin I.M., Chermoshentsev D.A., Anikin E.V., Dyakov S.A., Gippius N.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).