Demographic characteristics of the Russian population

Cover Page

Cite item

Full Text

Abstract

The article deals with the results of numerical estimation of demographic characteristics of the Russian female and male populations using the example of the RF 2019 statistical materials with the help of the digital twin for population developed by the author with his colleagues. It demonstrates the capabilities of the digital twin to estimate the attainment of life expectancy limits and predict the demographic characteristics of any population based on previous statistical data of that population. There was used a hardware-software package with embedded the digital twin for the Russian population on the basis of thirty-three years of statistical research into the effects of the total lifestyle index on longevity, workability, ageing and other population characteristics. The life expectancy of the Russian Federation population with the demographic characteristics for 2019 tends to 79 years for men and 122 years for women, with a maximum possible total lifestyle index. For the current demographic characteristics of the population, the rate of population aging from time for different total lifestyle indices has at least one maximum. The possibility of numerical calculation of life expectancy as a function of changes in the average weight of the male and female population is shown. The possibility of controlling the biological age of a population member depending on his total lifestyle index is shown. Developed hardware-software complex based on digital twin for population estimation of demographic characteristics of populations can be used to calculate and predict the demographic characteristics of any population on the basis of previous statistical data of this population. Hardware-software complex can be useful for public and state organizations, statistical agencies, medical organizations of different profiles. insurance companies, staff recruitment companies, pension funds, venture capital funds, private finance funds, private banks and capital management organizations.

About the authors

Yury P. Gushcho

NanoRelief Display LLC Skolkovo IT cluster Moscow Innovation Cluster

Email: yguscho@gmail.com
ORCID iD: 0000-0002-3408-4690
Doctor of Technical Sciences, Professor, General Director Moscow, Russia

References

  1. Guscho, Yury. The price of life / Yury Guscho. — Moscow, 2011. — 428 c. — URL: https://www.amazon.com/s?i=stripbooks&rh=p_27%3AYury+Gushcho&s=relevancerank&text=Yury+Gushcho&ref=dp_byline_sr_book_1 (дата обращения: 10.07.2023).
  2. Гущо, Ю. П. 12 ключей от сейфа долголетия, второе издание / Ю. П. Гущо. — Москва, 2020. — 420 c. — URL: https://order.yuryguscho.ru/buy/310002 (дата обращения: 10.07.2023).
  3. Гущо, Ю. П. Как стать счастливым гольфистом / Ю. П. Гущо. — Москва, 2021. — 392 c. — URL: https://order.yuryguscho.ru/buy/474823 (дата обращения: 10.07.2023).
  4. Римашевская, Н. М. Человек и реформы: секреты выживания / Н. М. Римашевская // — Москва : ИСЭПН РАН, 2003. — 392 с.
  5. Börger, M. A combined analysis of hedge effectiveness and capital efficiency in longevity hedging / M. Börger, A. Freimann, J. Ruß // Insurance: Mathematics and Economics — 2021. — Vol. 99. — P. 309– 326. doi: 10.1016/j.insmatheco.2021.03.023
  6. Li, J. S.—H. Recent declines in life expectancy: Implication on longevity risk hedging / J. S-H Li, Y. Liu // Insurance: Mathematics and Economics — 2021. — Vol. 99(C). — P. 376–394. doi: 10.1016/j.insmatheco.2021.03.028
  7. Li, H. Forecasting mortality with international linkages. A global vector-autoregression approach / H. Li, Y. Shi // Insurance Mathematics and Economics — 2021. — Vol. 100. — P. 59–75. doi: 10.1016/j.insmatheco.2021.04.006
  8. Li, H. Assessing mortality inequality in the U.S.: What can be said about the future? / H. Li, R. J. Hyndman // Insurance: Mathematics and Economics — 2021. — Vol. 99. — P. 152–162. DOI: 1016/j.insmatheco.2021.03.014
  9. Majer, I. M. Modeling and forecasting health expectancy: theoretical framework and application / I. M. Majer, R. Stevens, W. J. Nusselder, J. P. Mackenbach, P. H. M. van Baal // Demography. — 2013. — No. 50(2). — P. 673–697. doi: 10.1007/s13524–012–0156–2
  10. Гущо, Ю. П. Статистическая геронтология и управление работоспособностью / Ю. П. Гущо, М. А. Гущо // Медицина и физическая культура: наука и практика. — 2019. — Т. 1. — № 3. — С. 34–40. doi: 10.20310/2658–7688–2019–1–3–34–40; EDN: SUCHLZ
  11. Супрун, А. П. Программа онлайн оптимизации работоспособности сотрудников компаний, спортсменов и пациентов медицинских центров / А. П. Супрун, Ю. П. Гущо, М. А. Гущо, B. B. Кузнецов // Медицина и физическая культура: наука и практика. — 2019 — Т. 1. — № 4. — С. 31–36. doi: 10.20310/2658–7688–2019–1–4–31–36; EDN: QKDNEX
  12. Медведев, А. В. Цифровые двойники территорий для поддержки принятия решений в сфере регионального социально-экономического развития / А. В. Медведев // Современные наукоёмкие технологии. — 2020. — № 6 (часть 1). — С. 61–66. doi: 10.17513/snt.38072; EDN: XFGUXI
  13. Арциков, В. Г. История АвтоВАЗа в лицах / В. Г. Арциков. — Тольятти : Издательский дом Семь Вёрст, Тольятти, 2021. — С. 74–76.
  14. Pak, K. Laboring Work and Healthy Aging / K. Pak, T. A. Dorien, M. Kooij // Encyclopedia of Gerontology and Population Aging. — 2021. — Р. 2837–2838. doi: 10.1007/978–3–030–22009–9

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).