Optimization of the astaxanthine eter synthesis by the method of mathematical planning

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Relevance. Astaxanthin occurs naturally in free and esterified form. An important distinguishing property of astaxanthin esters is their great stability during storage, heating and oxidation. It is possible to obtain a substance with an optimal set of physical, chemical and biological characteristics by improving the method of synthesis of the active molecule, which is rationally carried out by mathematical methods.

The purpose of the study is to optimize the method for the synthesis of astaxanthin ester and benzoic acid by the method of mathematical planning of the experiment.

Material and methods. The influence of the synthesis parameters on the yield of the ester of astaxanthin and benzoic acid, β,β-carotene-4,4'-dione-3,3'-dibenzoate, was evaluated by the method of mathematical planning of the experiment, using the construction of a mathematical model based on the first-order regression equation.

Results. The steep ascent method was used to determine the optimal parameters for the synthesis of β,β-carotene-4,4'-dione-3,3'-dibenzoate. The maximum yield of the target product β,β-carotene-4,4'-dione-3,3'-dibenzoate was achieved at a synthesis temperature of 60°C, a reaction time of 4.5 hours, a biocatalyst amount of 0.5 g, and a stirring speed of 55 rpm.

Conclusions. Using the construction of a mathematical model and the search for optimal conditions using the steep climb method, we managed to increase the yield of the target synthesis product β,β-carotene-4,4'-dione-3,3'-dibenzoate from 50% in the initial conditions to 65%, and also to reveal the influence of all considered factors on the synthesis process. The data obtained on the basis of the conducted studies by the method of mathematical planning of the experiment suggest that the optimal yield of β,β-carotene-4,4'-dione-3,3'-dibenzoate is achieved if the synthesis is carried out at 60°C for 4.5 hours, with a stirring speed of 55 rpm and in the presence of 0.5 g of the Novozyme 435 biocatalyst. During the experiment, it was found that an additional optimization parameter to be introduced into the model could be the “number of biocatalyst use cycles”. However, at the moment it cannot be taken into account in the mathematical model, because this property of the enzyme refers to uncontrolled optimization factors.

Sobre autores

S. Pechinskii

Pyatigorsk Medical Pharmaceutical Institute – Branch of Volgograd State Medical University

Autor responsável pela correspondência
Email: hplc@yandex.ru
ORCID ID: 0000-0002-9505-9990
Código SPIN: 9798-4663
Scopus Author ID: 55993869200
Researcher ID: AAN-3254-2020

Ph.D (Pharm.), Associate Professor, Department of Pharmaceutical Chemistry

Rússia, Pyatigorsk

E. Oganesyan

Pyatigorsk Medical Pharmaceutical Institute – Branch of Volgograd State Medical University

Email: edwardov@mail.ru
ORCID ID: 0000-0002-2756-9382
Código SPIN: 7712-0253
Scopus Author ID: 9132988300
Researcher ID: ABI-2824-2020

Dr.Sc. (Pharm.), Professor, Head of Department of Organic Chemistry

Rússia, Pyatigorsk

A. Kuregyan

Pyatigorsk Medical Pharmaceutical Institute – Branch of Volgograd State Medical University

Email: Kooreguan@mail.ru
ORCID ID: 0000-0002-0698-8254
Código SPIN: 4547-1787
Scopus Author ID: 6506046751
Researcher ID: AAN-3267-2020

Dr.Sc. (Pharm.), Professor, Department of Pharmaceutical Chemistry

Rússia, Pyatigorsk

Bibliografia

  1. Blass B.E. Basic principles of drug discovery and development Academic Press, 2015.
  2. ICH guideline Q8 (R2) on pharmaceutical development. URL: https://www.ema.europa.eu/en/ich-q8-r2-pharmaceutical-development-scientific-guideline.
  3. Politis S.N., Colombo P., Colombo G., M. Rekkas D. Design of experiments (DoE) in pharmaceutical development. Drug Development and Industrial Pharmacy. 2017; 43(6): 889–901. doi: 10.1080/03639045.2017.129167210.1080/03639045.2017.1291672.
  4. Huijser S., Taatgen N.A., van Vugt M.K. The art of planning ahead: When do we prepare for the future and when is it effective? J. Exp. Psychol. Learn. Mem. Cogn. 2021;47(5): 705–726. doi: 10.1037/xlm0000970.
  5. Subramanian B., Thibault M.-H., Djaoued Y., Pelletier C., Touaibia M., Tchoukanova N. Chromatographic, NMR and vibrational spectroscopic investigations of astaxanthin esters: application to «Astaxanthin-rich shrimp oil» obtained from processing of Nordic shrimps. Royal Society of Chemistry. 2015; 1–11. doi: 10.1039/c5an01261a.
  6. Hwang S.H., Kim J.M., Kim S., Yoon M.J., Park K.S. Chemical Transformatioen of Astaxanthin from Haematococcus pluvialis Improves Its Antioxidative and Anti-inflammatory Activities. ACS Omega, 2020; 5(30): 19120–19130. doi: 10.1021/acsomega.0c02479
  7. Panis G., Rosales Carreon G. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line Author links open overlay panel. Algal Research. 2016; 18: 175–190. DOI.org/10.1016/j.algal.2016.06.007.1.
  8. Liu X., Osawa T. Cis-astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem. Biophys. Res. Commun. 2007; 1. (357): 187–193. doi: 10.1016/j.bbrc.2007.03.120.
  9. Liu X., Song M., Gao Z., Cai X., Dixon W., Chen X. Cao Y., Xiao H. Stereoisomers of Astaxanthin inhibit Human colon cancer cell growth by inducing G2/M cell cycle arrest and apoptosis. J. Agric. Food Chem. 2016; 64: 7750–7759. doi: 10.1021/acs.jafc.6b03636.
  10. Lorenz R.T., Cysewski G.R. Commercial potential of Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology. 2000; 18: 160–167. doi: 10.1016/s0167-7799(00)01433-5.
  11. Higuera-Ciapara I., Felix-Valenzuela L., Goycoolea F.M. Astaxanthin: a review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006; 46(2): 185–196. doi: 10.1080/10408690590957188
  12. Fassett R.G., Jeff S. Coombes Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease. Mar. Drugs. 2011; 9(3): 447–465. doi: 10.3390/md9030447.
  13. Khan S.K., Malinski T., Mason R.P., Kubant R., Jacob R.F., Fujioka K., Denstaedt S.J., King T.J., Jackson H.L., Hieber A.D., Lockwood S.F., Goodin T.H., Pashkow F.J., Bodary P.F. Novel astaxanthin prodrug (CDX-085) attenuates thrombosis in a mouse model. Thromb Res. 2010; 126: 299–305. doi: 10.1016/j.thromres.2010.07.003
  14. Patil A.D., Kasabe P.J., Dandge P.B. Pharmaceutical and nutraceutical potential of natural bioactive pigment: astaxanthin. Nat Prod Bioprospect. 2022; 12(1): 25. doi: 10.1007/s13659-022-00347-y.
  15. Gross G.J., Hazen S.L., Lockwood S.F. Seven days oral supplementation with Cardax (disodium disuccinate astaxanthin) provides significant cardioprotection and reduces oxidative stress in rats. Molecular and Cellular Biochemistry. 2006; 283: 23–30. doi: 10.1007/s11010-006-2217-6.
  16. Stachowiak B, Szulc P. Astaxanthin for the Food Industry. Molecules. 2021; 26(9): 2666. doi: 10.3390/molecules26092666.
  17. Dong H., Li X., Xue C., Mao X. Astaxanthin preparation by fermentation of esters from Haematococcus pluvialis algal extracts with Stenotrophomonas species. Biotechnol Prog. 2016; 32(3): 649–656. doi: 10.1002/btpr.2258.
  18. Patent 2702005 RF. Sintez polusinteticheskih proizvodnyh prirodnyh ljuteina i astaksantina / S.V. Pechinskij, A.G. Kuregjan, Je.F. Stepanova. № 201845080: zajavl.18.12.2018 : opubl. 03.103.2019 2 s. (In Russ.).
  19. Pechinskij S.V., Kuregyan A.G., Oganesyan E.T., Stepanova E.F. Sintez slozhnyh efirov lyuteina, astaksantina i prognoz ih aktivnosti. ZHurnal obshchej himii. 2019; 5(89): 721–725.
  20. Ponomarev V.D., Belikov V.G., Kokovkin-Shcherbak N.I. Matematicheskie metody v farmacii, M.: Medicina, 1983.
  21. Pechinskij S.V. Vybor parametrov, vliyayushchih na sintez slozhnyh efirov astaksantina. Proryvnye nauchnye issledovaniya: problemy, predely i vozmozhnosti: sb. statej mezhdunar. nauch.-prakt. konf. Ufa: OMEGA SCIENCE. 2023. S. 170–173.
  22. Gosudarstvennaya farmakopeya Rossijskoj Federacii. 14 izd-е: v 4 t. Moskva, 2018. URL:http://femb.ru/ femb/pharmacopea.php.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».