Computer simulation of the processes of complexation between new derivatives of quinazoline-4(3H)-one, quinazoline-2,4(1H,3H)-dione and cytochrome P-450 sterol-7Α-hydroxylase (CYP27A1) when studying their antimicrobial effects against Klebsiella pneumoniae
- Авторлар: Samotrueva M.А.1, Starikova A.A.1, Zolotareva N.V.1,2, Tsibizova A.А.1, Yasenyavskaya A.L.1, Temerev I.A.1, Merezhkina D.V.3, Borischuk A.R.3, Ozerov A.A.3
-
Мекемелер:
- Astrakhan State Medical University of Minzdrav of Russia
- Tatishchev Astrakhan State University
- Volgograd State Medical University of Minzdrav of Russia
- Шығарылым: Том 28, № 4 (2025)
- Беттер: 3-11
- Бөлім: Pharmaceutical chemistry
- URL: https://ogarev-online.ru/1560-9596/article/view/290923
- DOI: https://doi.org/10.29296/25877313-2025-03-01
- ID: 290923
Дәйексөз келтіру
Аннотация
Introduction. Multi-resistance of Klebsiella pneumoniae to known antimicrobial agents determines the need for urgent development of new drugs exhibiting an antibacterial effect. Compounds used in the treatment of non-infectious pathologies, affecting various protein targets and realizing the "antimicrobial potential", seem promising in the search for new derivatives. Of particular interest is the predicted high probability of inhibition of sterol-27-hydroxylase cytochrome P-450 (CYP27A1) by new derivatives of quinazoline-4(3H)-one and quinazoline-2,4(1H,3H)-dione with the possibility of preventing the processes of conversion of cholesterol, as the main component of macrophage lipid rafts on which pathogen adhesion occurs. Activation of phagocytosis, as well as disruption of the formation of the polysaccharide capsule of K. pneumoniae, is considered one of the probable mechanisms of the antibacterial effect of the studied substances.
The aim – determination of reactivity parameters and potential pharmacological activity of quinazolin-4(3H)-one and quinazolin-2,4(1H,3H)-dione derivatives; prediction of the mechanism of antimicrobial action of new quinazolinones against K. pneumoniae based on the formation of a complex with CYP27A1.
Material and methods. The probability of CYP27A1 inhibition by new quinazolinone derivatives was predicted using the PASS program. Quantum chemical parameters were calculated using the parameterized PM7 method in the MOPAC 2016 program. The structural characteristics of the studied substances were determined using ProTox 3.0. Some pharmacokinetic parameters were assessed using the admetSAR software tool. A three-dimensional model of the protein structure of CYP27A1 was generated on the AlphaFold platform; optimal conformation and further clustering of protein sequences using the MMseqs2 and Foldseek algorithms. The determination of the energy parameters of the intermolecular complexes “quinazolinone CYP27A1”, as well as the identification of the amino acid sites to which the quinzolinone derivative binds, was carried out using the Swiss Dock system.
Results. Quantum-chemical and structural parameters of quinazoline-4(3H)-one and quinazoline-2,4(1H,3H)-dione derivatives, as well as their intermolecular complexes with CYP27A1, were established, and some pharmacokinetic parameters of the studied substances were predicted.
Conclusions. Control of the interaction of the compound with the lipid raft of the macrophage and an increase in the degree of penetration of the pathogen into its cell can be considered as a probable mechanism of the antibacterial action of quinazoline-4(3H)-one and quinazoline-2,4(1H,3H)-dione derivatives against Klebsiella pneumoniae. An increase in the number of naphthyl radicals in their molecule leads to a decrease in reactivity. Naphthyl radicals do not act as a pharmacophore of antimicrobial action against K. pneumoniae.
Толық мәтін
##article.viewOnOriginalSite##Авторлар туралы
M. Samotrueva
Astrakhan State Medical University of Minzdrav of Russia
Хат алмасуға жауапты Автор.
Email: ms1506@mail.ru
ORCID iD: 0000-0001-5336-4455
SPIN-код: 5918-1341
Dr.Sc. (Med.), Professor, Head of the Pharmacognosy, Pharmaceutical Technology and Biotechnology Chair
Ресей, Bakinskaya st., 121, Astrakhan, 414000A. Starikova
Astrakhan State Medical University of Minzdrav of Russia
Email: alhimik.83@mail.ru
ORCID iD: 0000-0002-5210-5248
SPIN-код: 3600-5690
Senior Lecturer of the Department Fundamental Chemistry, Research Assistant of the Research Center
Ресей, Bakinskaya st., 121, Astrakhan, 414000N. Zolotareva
Astrakhan State Medical University of Minzdrav of Russia; Tatishchev Astrakhan State University
Email: zoloto.chem@mail.ru
ORCID iD: 0000-0002-8788-1511
SPIN-код: 7443-5472
Ph.D. (Tech.), Associate Professor, Associate Professor of the Department Fundamental and Applied Chemistry
Ресей, Bakinskaya st., 121, Astrakhan, 414000; Tatishcheva st., 20a, Astrakhan, 414056A. Tsibizova
Astrakhan State Medical University of Minzdrav of Russia
Email: sasha3633@yandex.ru
ORCID iD: 0000-0002-9994-4751
SPIN-код: 2206-3898
Ph.D. (Pharm.), Associate Professor, Head of the Research Center, Associate Professor of the Pharmacognosy, Pharmaceutical Technology and Biotechnology Chair
Ресей, Bakinskaya st., 121, Astrakhan, 414000A. Yasenyavskaya
Astrakhan State Medical University of Minzdrav of Russia
Email: yasen_9@mail.ru
ORCID iD: 0000-0003-2998-2864
SPIN-код: 5809-5856
Ph.D. (Med.), Associate Professor, Head of the Research Center, Associate Professor of the Pharmacognosy, Pharmaceutical Technology and Biotechnology Chair
Ресей, Bakinskaya st., 121, Astrakhan, 414000I. Temerev
Astrakhan State Medical University of Minzdrav of Russia
Email: igantem@gmail.com
ORCID iD: 0000-0002-7582-3453
SPIN-код: 9258-4322
Student
Ресей, Bakinskaya st., 121, Astrakhan, 414000D. Merezhkina
Volgograd State Medical University of Minzdrav of Russia
Email: merezhkinad@mail.ru
ORCID iD: 0000-0002-9848-7149
SPIN-код: 1590-4111
Post-graduate Student
Ресей, Pavshikh Bortsov sq., 1, Volgograd, 400066A. Borischuk
Volgograd State Medical University of Minzdrav of Russia
Email: alena.pluzh15@mail.ru
ORCID iD: 0009-0000-4633-598X
SPIN-код: 1519-2505
Applicant of the Department of the Pharmaceutical and Toxicological Chemistry Chair
Ресей, Pavshikh Bortsov sq., 1, Volgograd, 400066A. Ozerov
Volgograd State Medical University of Minzdrav of Russia
Email: prof_ozerov@yahoo.com
ORCID iD: 0000-0002-4721-0959
SPIN-код: 3289-3813
Dr.Sc. (Chem.), Professor, Head of the Pharmaceutical and Toxicological Chemistry Chair
Ресей, Pavshikh Bortsov sq., 1, Volgograd, 400066Әдебиет тізімі
- Harrower J., McNaughtan M., Hunteret C. et al. Chemical fate and partitioning behavior of antibiotics in the aquatic environment – a review. Environmental toxicology and chemistry. 2021; 40(12): 3275–3298. doi: 10.1002/etc.5191.
- Xie M., Gao M., Yun Y. et al. Antibacterial nanomaterials: mechanisms, impacts on antimicrobial resistance and design principles. Angewandte Chemie International Edition. 2023; 62(17): e202217345. doi: 10.1002/anie.202217345.
- WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. URL: https://www.who.int/publications/i/item/9789240093461. (Дата обращения: 7.07.2024).
- Barbarossa A., Rosato A., Corbo F. et al. Non-antibiotic drug repositioning as an alternative antimicrobial approach. Antibiotics. 2022; 11(6): 816. doi: 10.3390/antibiotics11060816.
- Martins M., Dastidar S., Fanning S. et al. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities. International journal of antimicrobial agents. 2008; 31(3): 198–208. doi: 10.1016/j.ijantimicag.2007.10.025.
- Quinn C., Jessup W., Wong J. et al. Expression and regulation of sterol 27-hydroxylase (CYP27A1) in human macrophages: a role for RXR and PPARγ ligands. Biochemical Journal. 2005; 385(3): 823–830. doi: 10.1042/BJ20041776.
- Chatterjee R., Chowdhury A., Mukherjee D. et al. Lipid larceny: channelizing host lipids for establishing successful pathogenesis by bacteria. Virulence. 2021; 12(1): 195–216. doi: 10.1080/21505594.2020.1869441.
- Vieira F., Correa G., Einicker‐Lamas M. et al. Host‐cell lipid rafts: a safe door for micro‐organisms? Biology of the Cell. 2010; 102(7): 391– 407. doi: 10.1042/BC20090138.
- Picking W.L., Picking W.D. The many faces of IpaB. Frontiers in cellular and infection microbiology. 2016; 6: 12. doi: 10.3389/fcimb.2016.00012.
- Ares M., Sansabas A., Rodríguez-Valverde D. et al. The interaction of Klebsiella pneumoniae with lipid rafts-associated cholesterol increases macrophage-mediated phagocytosis due to down regulation of the capsule polysaccharide. Frontiers in Cellular and Infection Microbiology. 2019; 9: 255. doi: 10.3389/fcimb.2019.00255.
- Самотруева М.А., Озеров А.А., Старикова А.А. и др. Изучение антимикробной активности новых хиназолин-4(3Н)-онов по отношению к Staphylococcus aureus и Streptococcus pneumonia. Фармация и фармакология. 2021; 9(4): 318–329. [Samotrueva M.A., Ozerov A.A., Starikova A.A. i dr. To study the antimicrobial activity of new quinazoline-4(3H)-ones in relation to Staphylococcus aureus and Streptococcus pneumonia. Farmatsiya i farmakologiya. 2021; 9(4): 318–329. (In Russ.)]. doi: 10.19163/2307-9266-2021-9-4-318-329.
- Старикова А.А., Габитова Н.М., Цибизова А.А. и др. Изучение антимикробной активности новых производ-ных хиназолин-4(3Н)-она по отношению к Escherichia coli и Klebsiella pnevmoniae. Астраханский медицинский журнал. 2022; 17(1): 60–71. [Starikova A.A., Gabitova N.M., Tsibizova A.A. i dr. Detection of antimicrobial activity of new quinazoline-4(3H)-oh derivatives in relation to Escherichia coli and Klebsiella pnevmoniae. Astrakhanskii meditsinskii zhurnal. 2022; 17(1): 60–71. (In Russ.)]. doi: 10.48612/agmu/2022.17.1.60.71.
- Breijyeh Z., Karaman R. Design and synthesis of novel antimicrobial agents. Antibiotics. 2023; 12(3): 628. doi: 10.3390/antibiotics12030628.
- Jumper J., Evans R., Pritzel A. et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596(7873): 583–589. doi: 10.1038/s41586-021-03819-2.
- Mirdita M, Steinegger M., Soeding J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics. 2019; 35(16): 2856-2858. https://doi.org/10.1093/bioinformatics/bty1057.
- Barrio-Hernandez I., Yeo, J. et al. Clustering predicted structures at the scale of the known protein universe. Nature. 2023; 622(7983): 637–645. doi: 10.1038/s41586-023-06510-w.
- Grosdidier A., Zoete V., Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011; 39(suppl_2): W270-W277.doi: 10.1093/nar/gkr366.
Қосымша файлдар
