Development of a gel for administration to correct blood levels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Relevance. Medicinal plants are traditionally used as components that make up a healthy lifestyle program, prevention and treatment of certain diseases, including diabetes mellitus.

Aim: to develop and justify the composition of the gel for oral administration in the treatment of type 2 diabetes mellitus in a dosage form convenient for the patient for self-administration.

Material and methods. The object of the study is a standardized dense collection of the collection of the medicinal substance, the presence of rhizomes and high elecampane of high growth (Inula helenium L., rhizomata et radices), lingonberry leaves (Vaccinium vitis-idaea L., folia), rose hips (Rosa spp., fructus) and grass motherwort five-lobed or heart (Leonurus quinquelobatus Gilib. et
L. cardiaca L., herba) in probably 55%, 15%, 15%, 15%, respectively. Research methods meet the requirements of the RF GF.

Results. TAgar was chosen as a gelling agent for the dosage form, potassium sorbate as a preservative, and purified water as a solvent. The flavoring agent is erythritol. A method for determining inulin in a gel for oral administration has been developed.

Conclusion. A technology for obtaining a gel for oral administration has been developed, including the stages of obtaining a gel base and introducing a thick extract into the resulting base. A technique has been developed for the determination of inulin in a gel for oral administration. The quality indicators of the gel with a thick extract for oral administration were established according to the main indicators: appearance, uniformity, pH value, authenticity, quantitative determination of the inulin content.

About the authors

M. A. Dzhavakhyan

Moscow State University of Medicine and Dentistry A.I. Evdokimova; All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Author for correspondence.
Email: akopovamarina13@mail.ru

Dr.Sc. (Pharm.), Associate Professor, Head of Director of the Scientific and Educational Institute of Pharmacy; Chief Research Scientist; гл. науч. сотрудник,

Russian Federation, Moscow

N. R. Pavec

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: akopovamarina13@mail.ru

Applicant

Russian Federation, Moscow

O. A. Semkina

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: akopovamarina13@mail.ru

Ph.D. (Pharm.), Leading Research Scientist

Russian Federation, Moscow

K. А. Pupykina

Bashkir State Medical University

Email: akopovamarina13@mail.ru

Dr.Sc. (Pharm.), Professor of the Department of Pharmacognosy with a Course of Botany and the Basics of Phytotherapy

Russian Federation, Ufa

D. V. Kurkin

Moscow State University of Medicine and Dentistry A.I. Evdokimova

Email: akopovamarina13@mail.ru

Dr.Sc. (Pharm.), Director of the Scientific and Educational Institute of Pharmacy

Russian Federation, Moscow

А. A. Маrkaryan

Moscow State University of Medicine and Dentistry A.I. Evdokimova

Email: akopovamarina13@mail.ru

Dr.Sc. (Pharm.), Vice-Rector

Russian Federation, Moscow

References

  1. Дедов И.И., Шестакова М.В., Викулова О.К., Железнякова А.В., Исаков М.А., Сазонова Д.В., Мокрышева Н.Г. Сахарный диабет в Российской Федерации: динамика эпидемиологических показателей по данным Федерального регистра сахарного диабета за период 2010–2022 гг. Сахарный диабет. 2023; 26(2): 104–123.
  2. Elsaied E.H., Dawaba H.M., Ibrahim E.S.A., Afouna M.I. Spanlastics gel-A novel drug carrier for transdermal delivery of glimepiride. J Liposome Res. 2023; 33(1): 102–114. doi: 10.1080/08982104.2022.2100902.
  3. Shinde U.A., Modani S.H., Singh K.H. Design and Development of Repaglinide Microemulsion Gel for Transdermal Delivery. AAPS PharmSciTech. 2018; 19(1): 315–325. doi: 10.1208/s12249-017-0811-4.
  4. Li B.X., Lv J., Zhang X., Zhang C., Guo S.Q., Ma R.J., Wang H., Zhang Y.L. Hypoglycemic effect of insulin-loaded hydrogel-nanogel composite on streptozotocin-induced diabetic rats. Pharmazie. 2021; 76(8): 364–371. doi: 10.1691/ph.2021.1344.
  5. Ullah N., Amin A., Farid A., Selim S., Rashid S.A., Aziz M.I., Kamran S.H., Khan M.A., Rahim Kh.N., Mashal S., Mohtasheemul H.M. Development and Evaluation of Essential Oil-Based Nanoemulgel Formulation for the Treatment of Oral Bacterial Infections. Gels. 2023; 9(3): 252. doi: 10.3390/gels9030252.
  6. Deyo-Svendsen M., Herrmann S., Andrist C., Phillips M., Svendsen M.C., Svendsen R.O. Prevention of Neonatal Hypoglycemia with Oral Glucose Gel for High-Risk Newborns. WMJ. 2021; 120(1): 51–53.
  7. Hubbard E.M., Hay W.W. Jr. The Term Newborn: Hypoglycemia. Clin Perinatol. 2021; 48(3): 665–679. doi: 10.1016/j.clp.2021.05.013.
  8. Wiwattanapatapee R., Klabklay K., Raksajit N., Siripruekpong W., Leelakanok N., Petchsomrit A. The development of an in-situ biopolymer-based floating gel for the oral delivery of metformin hydrochloride. Heliyon. 2023; 9(4): e14796. doi: 10.1016/j.heliyon.2023.e14796.
  9. Shabir F., Mahmood A., Zafar N., Zaman M., Sarfraz R.M., Ijaz H. Novel Black Seed Polysaccharide Extract-g-Poly (Acrylate) pH-Responsive Hydrogel Nanocomposites for Safe Oral Insulin Delivery: Development, In vitro, In vivo and Toxicological Evaluation. Pharmaceutics. 2022; 15(1): 62. doi: 10.3390/pharmaceutics15010062.
  10. Seca A.M., Grigore A., Pinto D.C., Silva A.M. The genus Inula and their metabolites: from ethnopharmacological to medicinal uses. J Ethnopharmacol. 2014; 154(2): 286–310. doi: 10.1016/j.jep.2014.04.010.
  11. Bao S., Wang X., Ma Q., Wei C., Nan J., Ao W. Mongolian medicine in treating type 2 diabetes mellitus combined with nonalcoholic fatty liver disease via FXR/LXR-mediated P2X7R/NLRP3/NF-κB pathway activation. Chin Herb Med. 2022; 14(3): 367–375. doi: 10.1016/j.chmed.2022.06.003.
  12. Singh T.N., Upadhyay B.N., Tewari C.M., Tripathi S.N. Management of diabetes mellitus (prameha) with inula racemosa and cinnamomum tamala. Anc Sci Life. 1985; 5(1): 9–16.
  13. Kobayashi T., Song Q.H., Hong T., Kitamura H., Cyong J.C. Preventative effects of the flowers of Inula britannica on autoimmune diabetes in C57BL/KsJ mice induced by multiple low doses of streptozotocin. Phytother Res. 2002; 16(4): 377–382. doi: 10.1002/ptr.868.
  14. Zhao C., Diao Y., Wang C., Qu W., Zhao X., Ma H., Shan J., Sun G. Structural characters and protecting β-cells of a polysaccharide from flowers of Inula japonica. Int J Biol Macromol. 2017; 101: 16–23. doi: 10.1016/j.ijbiomac.2017.03.044.
  15. Eid H.M., Ouchfoun M., Brault A., Vallerand D., Musallam L., Arnason J.T., Haddad P.S. Lingonberry (Vaccinium vitis-idaea L.) Exhibits Antidiabetic Activities in a Mouse Model of Diet-Induced Obesity. Evid Based Complement Alternat Med. 2014; 2014: 645812. doi: 10.1155/2014/645812.
  16. Ryyti R., Hämäläinen M., Peltola R., Moilanen E. Beneficial effects of lingonberry (Vaccinium vitis-idaea L.) supplementation on metabolic and inflammatory adverse effects induced by high-fat diet in a mouse model of obesity. PLoS One. 2020; 15(5): e0232605. doi: 10.1371/journal.pone.0232605.
  17. Lima R.C.., Böcker U., McDougall G.J., Allwood J.W., Afseth N.K., Wubshet S.G. Magnetic ligand fishing using immobilized DPP-IV for identification of antidiabetic ligands in lingonberry extract. PLoS One. 2021; 16(2): e0247329. doi: 10.1371/journal.pone.0247329.
  18. Hager R., Pitsch J., Kerbl-Knapp J., Neuhauser C., Ollinger N., Iken M, Ranner J., Mittermeier-Kleßinger V., Dawid C., Lanzerstorfer P., Weghuber J. A High-Content Screen for the Identification of Plant Extracts with Insulin Secretion-Modulating Activity. Pharmaceuticals (Basel). 2021; 14(8): 809. doi: 10.3390/ph14080809.
  19. Reichert K.P., Schetinger M.R.C., Gutierres J.M., Pelinson L.P., Stefanello N., Dalenogare D.P., Baldissarelli J., Lopes T.F., Morsch V.M. Lingonberry Extract Provides Neuroprotection by Regulating the Purinergic System and Reducing Oxidative Stress in Diabetic Rats. Mol Nutr Food Res. 2018; 62(16): e1800050. doi: 10.1002/mnfr.201800050.
  20. Schmidt S., Jakab M., Jav S., Streif D., Zehl M., Purevsuren S., Glasl S., Ritter M. Extracts from Leonurus sibiricus L. increase insulin secretion and proliferation of rat INS-1E insulinoma cells. J Ethnopharmacol. 2013; 150(1): 85–94. doi: 10.1016/j.jep.2013.08.013.
  21. Odei-Addo F., Shegokar R., Müller R.H., Levendal R.A., Frost C. Nanoformulation of Leonotis leonurus to improve its bioavailability as a potential antidiabetic drug. 3 Biotech. 2017; 7(5): 344. doi: 10.1007/s13205-017-0986-0.
  22. Zhang W., Zhang Y., Zhang H., Yuan M., Xiao L., Lu Y., Xu H. Trigonelline, An Alkaloid from Leonurus japonicas Houtt., Suppresses Mast Cell Activation and OVA-Induced Allergic Asthma. Front Pharmacol. 2021; 12: 687970. doi: 10.3389/fphar.2021.687970.
  23. Mnonopi N., Levendal R.A., Mzilikazi N., Frost C.L. Marrubiin, a constituent of Leonotis leonurus, alleviates diabetic symptoms. Phytomedicine. 2012; 19(6): 488–493. doi: 10.1016/j.phymed.2011.12.008.
  24. Lee J., Kim C., Lee H., Hwang J.K. Inhibitory Effects of Standardized Leonurus japonicus Extract and Its Bioactive Leonurine on TNF-α-Induced Muscle Atrophy in L6 Myotubes. J Microbiol Biotechnol. 2020; 30(12): 1896–1904. doi: 10.4014/jmb.2005.05023.
  25. Jung T.W., Kim H.Y., Cho W., Oh H., Lee H.J., Abd El-Aty A.M., Hacimuftuoglu A., Jeong J.H. Stachydrine alleviates lipid-induced skeletal muscle insulin resistance via AMPK/HO-1-mediated suppression of inflammation and endoplasmic reticulum stress. J Endocrinol Invest. 2022; 45(11): 2181–2191. doi: 10.1007/s40618-022-01866-8.
  26. Wu M., Liu H., Zhang J., Dai F., Gong Y., Cheng Y. The mechanism of Leonuri Herba in improving polycystic ovary syndrome was analyzed based on network pharmacology and molecular docking. J Pharm Pharm Sci. 2023; 26: 11234. doi: 10.3389/jpps.2023.11234.
  27. Павец Н.Р., Джавахян М.А. Анализ номенклатуры лекар-ственных препаратов, применяемых при сахарном диабете. Вопросы биологической, медицинской и фармацевтической химии. 2020; 23(6): 10–15 (Pavec N.R., Dzhavahjan M.A. Analiz nomenklatury lekarstvennyh preparatov, primenjaemyh pri saharnom diabete. Voprosy biologicheskoj, medicinskoj i farmacev-ticheskoj himii. 2020; 23(6): 10–15).
  28. Джавахян М.А., Павец Н.Р., Павельева О.К., Дул В.Н., Семкина О.А., Лупанова И.А., Трумпе Т.Е., Ферубко Е.В, Мартынчик И.А., Мизина П.Г., Сидельников Н.И. Средство, обладающее гипогликемическим действием, и способ его получения. Патент на изобретение 2773856 C9, 30.06.2022 (Dzhavahjan M.A., Pavec N.R., Pavel'eva O.K., Dul V.N., Semkina O.A., Lupanova I.A., Trumpe T.E., Ferubko E.V, Martynchik I.A., Mizina P.G., Sidel'nikov N.I. Sredstvo, obladajushhee gipoglikemicheskim dejstviem, i sposob ego poluchenija. Patent na izobretenie 2773856 C9, 30.06.2022).
  29. Джавахян М.А., Павец Н.Р., Павельева О.К. Теоретическое обоснование выбора лекарственного растительного сырья для создания сбора, предназначенного для лечения сахарного диабета 2-го типа. Вопросы обеспечения качества лекарственных средств. 2021; 4(34): 51–61 (Dzhavahjan M.A., Pavec N.R., Pavel'eva O.K. Teoreticheskoe obosnovanie vybora lekarstvennogo rastitel'nogo syr'ja dlja sozdanija sbora, prednaznachennogo dlja lechenija saharnogo diabeta 2-go tipa. Voprosy obespechenija kachestva lekarstvennyh sredstv. 2021; 4(34): 51–61).
  30. Джавахян М.А. Теоретические и экспериментальные аспекты создания лекарственных препаратов с субстанциями растительного происхождения в мягких лекарственных формах: Дис. … д-р фарм. наук. 2018. 322 с. (Dzhavahjan M.A. Teoreticheskie i jeksperimental'nye aspekty sozdanija lekarstvennyh preparatov s substancijami rastitel'nogo proishozhdenija v mjagkih lekarstvennyh formah: Dis. … d-r farm. nauk. 2018. 322 s.).
  31. Джавахян М.А., Комкова С.П., Давыдова А.В. Современные основообразующие вещества в технологии мягких лекарственных форм. Фармация. 2015; 8: 43–46 (Dzhavahjan M.A., Komkova S.P., Davydova A.V. Sovremennye osnovoobrazujushhie veshhestva v tehnologii mjagkih lekarstvennyh form. Farmacija. 2015; 8: 43–46).
  32. Rathod H., Mehta D. A Review on Pharmaceutical Gel. International Journal of Pharmaceutical Sciences. 2015; 1(1): 33–47.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Determination of taste profiles of experimental gel samples

Download (82KB)
3. Fig. 2. Effect of erythritol concentration on the taste of oral gel

Download (23KB)
4. Fig. 3. Absorption spectrum of the complex of fructosans with resorcinol in hydrochloric acid medium (1), placebo gel (2)

Download (29KB)
5. Fig. 4. Chromatogram of potassium sorbate in the test solution

Download (28KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».