Investigation of the protective effect of hesperidin and its combined use with amino acids on the permeability of cerebral vessels against the background of ir-radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. Epidemiological and clinical studies indicate the importance of flavonoid consumption for the prevention of cardiovascular diseases in particular. It is known that a diet enriched with flavonoids significantly increases the resistance of red blood cells to oxidative stress. Despite the great interest in flavonoids as potential means of protection against many human diseases, the real contribution of these compounds to maintaining health and the mechanisms by which they act are still unclear. According to available studies, the flavonone hesperidin is an antioxidant, capable of normalizing permeability and strengthening the walls of capillaries, protecting them from the damaging effects of free radicals and peroxide products. In this regard, it was of interest to directly evaluate the effect of both hesperidin itself and its artificial mixtures with amino acids on the permeability of the capillary wall of the brain.

The purpose of the study – study of the effect of the flavonoid hesperidin and its combinations with amino acids (glycine and lysine) on the permeability of cerebral vessels against the background of irradiation.

Material and methods. The objects of the study were the flavonoid hesperidin (isolated from citrus peel) and individual amino acids: lysine (HiMedia Laboratories, India), glycine (Sigma-Aldrich, Merck KGaA, Germany). The effect of hesperidin and the studied mixtures of hesperidin with amino acids mixture I – hesperidin-lysine (1:1) and mixture II – hesperidin-lysine-glycine (1:1:1) it was studied during the height of acute radiation sickness on the transcapillary exchange of the brain of white nonlinear sexually mature white rats. The studied compounds were administered in the form of an aqueous suspension to unirradiated animals and on the background of irradiation. Irradiation was carried out by the method of short-term general radiation exposure on a standard Agat-C therapeutic apparatus (dose 2 Gy, power 0.0171 Gy/sec, RIP 75 mm, area 20×20, Co60). Capillary permeability (transcapillary metabolism) was determined by comparing hematocrit and protein content in arterial and venous blood.

Results. Experimental studies confirm the activity of hesperidin and its combination with amino acids for a normalizing effect on the permeability of cerebral vessels. In unirradiated rats, the fluid output from the blood into the tissue was approximately 4.30 ± 0.03 ml for every 100 ml of blood, and the permeability of brain capillaries to protein averaged –2.5 ± 0.27% of the protein lost by tissues for every 100 ml of blood. On the 14th day after radiation exposure (the period of the height of acute radiation sickness in animals of the control group, the fluid output from the capillary bed was 5.9±0.21 ml/%, which was significantly higher than in non-irradiated animals by 37% (p<0.05). The loss of protein by tissues in these animals also significantly increased by more than 5 times compared with the indicators of non-irradiated rats. In rats treated with hesperidin and mixture II before irradiation, a significant decrease was observed after irradiation compared with the control of the permeability of brain capillaries for protein by 72% and 69%, respectively (p<0.05), i.e. about equally. At the same time, index characterizing the release of fluid from the blood into the tissue in these rats did not significantly change in comparison with control animals. At the same time, in rats injected with mixture I, a more pronounced significant decrease in the permeability of brain capillaries to protein by 80% was observed under the same conditions compared with the control, as well as a significant decrease in the release of fluid from the blood into the tissue by 17%.

Conclusions. Hesperidin and its mixtures with amino acids have the ability to strengthen capillary walls against the background of irradiation, leading to an increase in their permeability. It has been established that adding the amino acid lysine to hesperidin increases the effectiveness of its protective action, but not together with glycine. In this regard, the combination of hesperidin with lysine can be recommended for further studies on their use for the prevention of vascular pathology caused by irradiation.

About the authors

M. R. Khochava

Kuban State Medical University

Email: hochavamr@ksma.ru
ORCID iD: 0000-0002-0066-3598
SPIN-code: 6077-6575

Ph.D. (Pharm), Associate Professor, Associate Professor of the Department of Specialized Hygienic Disciplines, Epidemiology and General Hygiene

Russian Federation, 4 Sedina str., Krasnodar, 350063

O. V. Kiyok

Kuban State Medical University

Email: kiekov@ksma.ru
ORCID iD: 0000-0003-0900-6313
SPIN-code: 5634-9234

Dr.Sc. (Med.), Associate Professor,  Head of the Department of Specialized Hygienic Disciplines, Epidemiology and General Hygiene

Russian Federation, 4 Sedina str., Krasnodar, 350063

E. G. Dorkina

Pyatigorsk Medical-Pharmaceutical Institute – branch of the Volgograd State Medical University

Author for correspondence.
Email: elenadorkina@yandex.ru
ORCID iD: 0000-0001-8389-7789
SPIN-code: 9597-1811

Dr.Sc. (Biol.), Professor of the Department of Biology and Physiology

Russian Federation, 11 Kalinina Ave., Pyatigorsk, 357532

P. G. Mizina

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: mizina-pg@yandex.ru
ORCID iD: 0000-0001-6510-9603
SPIN-code: 7084-1962

Dr.Sc. (Pharm.), Professor, Advisor to the Director, Honored Scientist of the Russian Federation

Russian Federation, 7 Green str., Moscow, 117216

О. A. Bykova

North Caucasus branch of FSBI VILAR

Email: vilar8@rambler.ru
ORCID iD: 0000-0002-6032-2357
SPIN-code: 1721-8472

Ph.D. (Agricul.), Director

Russian Federation, village Vasyurinskaya, Dinskoy district, Krasnodar Territory, 353225

References

  1. Hochava M., Sampiev A., Oganesyan E. et al. Development of a technology for obtaining hesperidin from citrus fruit processing waste. BIO Web of Conferences. 2022; 46: 01013; https://doi.org/10.1051/bioconf/20224601013.
  2. Khochava M.R. Chemical and technological justification for the creation of flavonoid preparations using citrus waste: dis. ... Candidate of Pharmaceutical Sciences.:15.00.02/Khochava Medea Rudikovna. Pyatigorsk, 2001; 143 p.
  3. Dorkina E.G., Oganesyan E.T., Khochava M.R. etc. Isolation of hesperidin and total flavonoid fraction from citrus waste and experimental study of their use as hepatoprotective agents. Pyatigorsk: Pyatigorsk GFA, 2002; 31 p. Dept. in VINITI RAS 11.09.2002, No.1308-B2002.
  4. Dorkina E.G., Khochava M.R., Oganesyan E.T. et al. Investigation of the protective effect of hesperidin and its combined use with amino acids in acute toxic liver damage with carbon tetrachloride. Region, conf. on pharmacy, pharmacology and personnel training. Pyatigorsk: PGFA, 2001: 192–194.
  5. Ahmadi A., Shadboorestan A. Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer. 2016; 68: 29–39. doi: 10.1080/01635581.2015.1078822.
  6. Ganesh Chandra Jagetia, Lalrinpuii T. Hesperidin, a citrus bioflavonoid attnuates iron-induced biochemical oxidative stress in mouse liver. Biomed J Sci&Tech Res. 2018; 8(1): 6291–6302; https://doi.org/10.26717/BJSTR.2018.08.001602.
  7. Zverev Y.F. Antiplatelet activity of flavonoids. Nutrition issues. 2017; 8 (6): 6–20. doi: 10.24411/0042-8833-2017-00001.
  8. Sohel M., Sultana H., Sultana T. et al. Chemotherapeutic potential of hesperetin for cancer treatment, with mechanistic insights: A comprehensive review. Heliyon. 2022 Jan 23; 8(1): e08815. doi: 10.1016/j.heliyon.2022.e08815.
  9. Mutha R.E., Tatiya A.U., Surana S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Futur J Pharm Sci. 2021; 7(1): 25. doi: 10.1186/s43094-020-00161-8.
  10. Kozina Yu.V., Zukov R.A., Slepov E.V., Kozina E.V. The role of radioprotectors and immunotropes in the prevention of radiation reactions and complications. Effective pharmacotherapy. 2021; 17(2): 50–57. doi: 10.33978/2307-3586-2021-17-2-50-57.
  11. Mahdi Mashhadi Akbar Booja Flavonoids Radioprotective Effects Adv Pharm Bull. 2020; 10(1): 13–19. doi: 10.15171/apb.2020.002.
  12. Panchenko A.V. A new class of drugs based on hydrolytic lignin products: justification of the use as means of accompanying chemo- and radiation therapy of malignant neoplasms (experimental study) dis. ... Doctor of Medical Sciences.: 01/14/12. Oncology. St. Petersburg, 2019: 267 p.; https://www.niioncologii.ru/science/thesis/novyj-klass-preparatov-na-osnove-produktov-gidroliznogo-lignina/dissertaciya_panchenko.pdf.
  13. Coccia A., Mosca L., Puca R. et al. Extra-virgin olive oil phenols block cell cycle progression and modulate chemotherapeutic toxicity in bladder cancer cells. Oncol Rep. 2016 Dec; 36(6): 3095–3104. doi: 10.3892/or.2016.5150.
  14. Weiss J.F., Landauer M.R. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology. 2003 Jul 15; 189(1-2): 1–20. doi: 10.1016/s0300-483x(03)00149-5.
  15. Kurtseva A.A., Smakhtin M.Yu., Ivanov A.V., Besedin A.V. The effect of amino acids that make up the peptide glycyl-histidyl-lysine on the regeneration of skin wounds and the function of neutrophils. Man and his health. 2008; 3. URL: https://cyberleninka.ru/article/n/vliyanie-aminokislot-sostavlyayuschih-peptid-glitsil-gistidil-lizin-na-regeneratsiyu-kozhnyh-ran-i-funktsiyu-neytrofilov.
  16. Kudryashov Y.B. Chemical protection against radiation damage. Soros Educational Journal. 2000. 6(6):21-26. https://dl.libcats.org/ge-nesis/381000/86fbdc8c41c254bda3988d05c5d500ec/_as/[Kudryashov_Yu.B.]_Himicheskaya_zashita_ot_luchevo(libcats.org).pdf.
  17. Seleznev S.A., Nazarenko G.I., Zaitsev V.S. Clinical aspects of microhemocirculation L.: Medicine. 1985: 76–79.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».