Changes in the elemental composition of the chyme and metabolic processes in the rumen when exogenous enzymes are used in feeding bulls
- 作者: Grechkina V.V.1,2, Sheida E.V.1,3, Kvan O.V.1,3, Soboleva N.V.2, Ivanova L.V.2, Bykova L.A.3
-
隶属关系:
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences
- Orenburg State Agrarian University
- Orenburg State University
- 期: 卷 27, 编号 11 (2024)
- 页面: 72-79
- 栏目: Bioelementology
- URL: https://ogarev-online.ru/1560-9596/article/view/271781
- DOI: https://doi.org/10.29296/25877313-2024-11-09
- ID: 271781
如何引用文章
详细
Introduction. Coordination of the processes of scar digestion and metabolism in ruminants is a prerequisite for achieving high efficiency in the use of feed nutrients, improving product quality and profitability of production.
The purpose of this study was to evaluate whether the inclusion of the exogenous lipase enzyme in the diet of bullocks in feedlots has a positive effect on physiology, fermentation in the rumen, digestibility and the profile of fatty acids in the rumen.
Material and methods. In the experiment, 8 animals were used, divided into 2 groups. the bulls of the control group received the basic diet (RR), the experimental group also received RR with the inclusion of the lipase enzyme at a dosage of 25 g / head / day. The level of volatile fatty acids (VFA) in the contents of the scar was determined by gas chromatography on a gas chromatograph "Crystallux-4000M", determination of nitrogen forms according to GOST 26180-84. The elemental composition of biosubstrates was studied using atomic emission and mass spectrometry (NPP-ISP and MS-ISP) in the IC of the Central Research Center of the FNC BST RAS.
Results. The study of the ratio of LVH in the scar fluid showed that in the experimental group of animals the content of acetic acids decreased by 18.35%, propionic acid – 15.29%, butyric acid – 34.28%, valerian acid – 11.11%, while caproic acid was not found in the experimental group. Nitrogen metabolism in the body showed that the level of total nitrogen in the scar fluid increased by 64.71%, non–protein 53.66%, protein 66.22%, ammonia 78.57% (p <0.05), respectively. Analysis of the biomass of bacteria and protozoa showed that during the experiment, these indicators were higher in the experimental group of animals by 17.07% and 22.22%, respectively, compared with the control. The trace element composition of the scar fluid revealed differences in the mechanism of action of the lipase enzyme on the metabolism of chemicals. There was an increase in the concentration of chemical elements in the experimental group of bulls Ca – by 11.51%, P –17.72%, K – 20.34% (p≤0.05), Fe – 21.31%, Zn – 10.14%, Cu – 23.53%, Se – 39.13%. Against the background of a decrease in Ni – 11.44%, Ba – 14.67%, B – 9.00%, I – 33.33%, Al – 15.71 and Sr – 15.85% (p<0.05).
Conclusion. Thus, the study of microbial communities of the LJ rumen, primarily of cattle, is very relevant due to the possibility of rapid diagnosis and prevention of many pathologies of the digestive system associated with improper feeding, which, as a rule, is accompanied by the development of pathogenic and opportunistic microorganisms.
关键词
作者简介
V. Grechkina
Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences; Orenburg State Agrarian University
Email: viktoria1985too@mail.ru
ORCID iD: 0000-0002-1159-0531
Ph.D. (Biol.), Acting Head of the Laboratory, Associate Professor
俄罗斯联邦, Orenburg; OrenburgE. Sheida
Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences; Orenburg State University
Email: elena-shejjda@mail.ru
ORCID iD: 0000-0002-2586-613X
Dr. Sc. (Biol.), Senior Researcher
俄罗斯联邦, Orenburg; OrenburgO. Kvan
Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences; Orenburg State University
Email: kwan111@yandex.ru
ORCID iD: 0000-0003-0561-7002
Ph.D. (Biol.), Acting Head of the Department
俄罗斯联邦, Orenburg; OrenburgN. Soboleva
Orenburg State Agrarian University
Email: natalya.soboleva12@mail.ru
ORCID iD: 0000-0002-3688-2303
Ph.D. (Agricul.), Associate Professor
俄罗斯联邦, OrenburgL. Ivanova
Orenburg State Agrarian University
Email: ludmila056rus@mail.ru
Ph.D. (Agricul.), Associate Professor
俄罗斯联邦, OrenburgL. Bykova
Orenburg State University
编辑信件的主要联系方式.
Email: ludmila20082@yandex.ru
ORCID iD: 0000-0002-3031-1171
Ph.D. (Tech.), Associate Professor
俄罗斯联邦, Orenburg参考
- Betancur-Murillo C.L., Aguilar-Marin S.B., Jovel J. Prevotella: A key player in ruminal metabolism. Microorganisms. 2023; 11(1): 1. doi: 10.3390/microorganisms11010001.
- Лаптев Г., Йылдырым Е., Ильина Л. Микробиом рубца – основа здоровья коров. Животноводство России. 2020; 4: 42–45. [Laptev G., Yildirim E., Ilyina L. The rumen microbiome is the basis of cortical health. Animal husbandry of Russia. 2020; 4: 42–45. (In Russ.)].
- Фомичев Ю.П., Боголюбова Н.В., Мишуров А.В., Рыков Р.А. Биокоррекция ферментативных и микробиологических процессов в рубце, межуточный обмен у животных путем применения в питании антиоксиданта и органического йода. Российская сельскохозяйственная наука. 2019; 4: 43–47. [Fomichev Yu.P., Bogolyubova N.V., Mishurov A.V., Rykov R.A. Biocorrection of enzymatic and microbiological processes in the rumen, daily metabolism in animals by using an antioxidant and organic iodine in nutrition. Russian agricultural science. 2019; 4: 43–47. (In Russ.)]. doi: 10.31857/S2500-26272019443-47.
- Edison K.L., Ragitha V.S., Pradeep N.S. Beta-glucanases in animal nutrition. In: Pradeep N., Edison L.K., editors. Microbial Beta Glucanases. Interdisciplinary biotechnological advances. Springer, Singapore; 2022: 73–83. doi: 10.1007/978-981-19-6466-4_5.
- Ali U., Saeed M., Ahmad Z., et al. Stability and survivability of alginate gum-coated lactobacillus rhamnosus GG in simulated gastrointestinal conditions and probiotic juice development. Journal of Food Quality. 2023; 2023: 3660968. doi: 10.1155/2023/3660968.
- Liu Z.K., Li Y., Zhao C.C., et al. Effects of a combination of fibrolytic and amylolytic enzymes on ruminal enzyme activities, bacterial diversity, blood profile and milk production in dairy cows. Animal. 2022; 16(8): 100595. doi: 10.1016/j.animal.2022.100595.
- Ellatif S.A., Razik E.S.A., AL-Surhanee A.A., et al. Enhanced production, cloning, and expression of a xylanase gene from endophytic fungal strain Trichoderma harzianum kj831197.1: unveiling the in vitro anti-fungal activity against phytopathogenic fungi. J Fungi. 2022; 8(5): 447. doi: 10.3390/jof8050447.
- Refat B., Christensen D.A., Ismael A., et al. Evaluating the effects of fibrolytic enzymes on rumen fermentation, omasal nutrient flow and production performance in dairy cows during early lactation. Canadian Journal of Animal science. 2022; 102(1): 39–49. doi: 10.1139/cjas-2020-0062.
- Campana M., Morais J.P.G., Capucho E., et al. Fibrolytic enzymes increase fermentation losses and reduce fiber content of sorghum silage. Annals of animal science. 2023; 2023(1): 165–172. doi: 10.2478/aoas-2022-0038.
- Islam R., Rahman M., Islam S., et al. Degradation of lignocellulosic content of rice straw using aerobic cellulolytic bacteria isolated from forest soil of Bangladesh. African Journal of Microbiology Research. 2021; 15(3): 161–170. doi: 10.5897/AJMR2021.9498.
- Carrillo-Diaz M.I., Miranda-Romero L.A., Chavez-Aguilar G., et al. Improvement of ruminal neutral detergent fiber degradability by obtaining and using exogenous fibrolytic enzymes from whiterot fungi. Animals. 2022; 12(7): 843. doi: 10.3390/ani12070843.
- Ibarra-Islas A., Hernandez J.E.M., Armenta S., et al. Use of nutshells wastes in the production of lignocellulolytic enzymes by white-rot fungi. Brazilian Archives of Biology and Technology. 2023; 66: e23210654. doi: 10.1590/1678-4324-2023210654.
- Хамидуллин И.Р., Галиуллин А.К., Тамимдаров Б.Ф., Шакиров Ш.К. Идентификация микроорганизмов рубца крупного рогатого скота. Ученые записки Казанской государственной академии ветеринарной медицины. 2016; 227(3): 112–114. [Khamidullin I.R., Galiullin A.K., Tamimdarov B.F., Shakirov S.K. Identification of microorganisms of cattle rumen. Scientific notes of the Kazan State Academy of Veterinary Medicine. 2016; 227(3): 112–114. (In Russ.)]. DOI: https://sciup.org/14288848.
- Yang J.C., Guevara-Oquendo V.H., Refat B., Yu P. Effects of exogenous fibrolytic enzyme derived from trichoderma reesei on rumen degradation characteristics and degradability of low-tannin whole plant faba bean silage in dairy cow. Dairy. 2022; 3(2): 303–313. doi: 10.3390/dairy3020023.
- Singh A., Anil, Nair P.M., et al. A review on the role of exogenous fibrolytic enzymes in ruminant nutrition. Current Journal of Applied Science and Technology. 2022; 41(36): 45–58. doi: 10.9734/CJAST/2022/v41i363966.
- Лаптев Г., Ильина Л., Солдатова В. Микробиом рубца жвачных: современные представления. Животноводство России. 2018; 10: 38–42. [Laptev G., Ilyina L., Soldatova V. Microbiome of ruminant rumen: modern concepts. Animal husbandry of Russia. 2018; 10: 38–42. (In Russ.)].
- Estrada-Reyes Z., Tsukahara Y., Goetsch A., et al. Genetic markers for resistance to gastrointestinal parasites in sheep and goats from the southern region of the united states. 01/2022. doi: 10.32473/edis-an383-2022.
- Silva D.L., Dalolio F.S., Teixeira L.V., et al. Impact of the supplementation of exogenous protease and carbohydrase on the metabolizable energy and standardized ileal amino acid digestibility of soybean meals in two Brazilian regions. Brazilian Journal of Poultry Science. 2022; 24(04): 001–010. doi: 10.1590/1806-9061-2021-1452.
- Jabri J., Ammar H., Abid K., et al. Effect of exogenous fibrolytic enzymes supplementation or functional feed additives on in vitro ruminal fermentation of chemically pretreated sunflower heads. Agriculture. 2022; 12(5): 696. doi: 10.3390/agriculture12050696.
- Mousa G.A., Allak M.A., Hassan O.G.A. Influence of fibrolytic enzymes supplementation on lactation performance of ossimi ewes. Advances in Animal and Veterinary Sciences. 2022; 10(1): 27–34. doi: 10.17582/journal.aavs/2022/10.1.27.34.
补充文件
