In vitro cell cultures of Ginkgo biloba L., introduced in the moscow region are promising sources of substances with high biological activity
- Autores: Zaitseva S.М.1, Kalashnikova Е.А.1, Kirakosyan R.N.1, Balakina А.А.2
-
Afiliações:
- Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazeva
- Federal Research Center for Problems of Chemical Physics and Medical Chemistry
- Edição: Volume 27, Nº 10 (2024)
- Páginas: 67-78
- Seção: Plant protection and biotechnology
- URL: https://ogarev-online.ru/1560-9596/article/view/270963
- DOI: https://doi.org/10.29296/25877313-2024-10-10
- ID: 270963
Citar
Resumo
Intoduction. Ginkgo biloba (L.) are relict plants characterized by a limited area of growth, the valuable biomass of which is able to accumulate unique secondary metabolites that do not have synthetic analogues. Based on extracts of the leaves of ginkgo biloba, which have a nootropic effect. biologically active additives and medicines are produced – Tanakan, Bilobil, Ginkor gel, etc.. Plants of the genus Ginkgo grow in specialized microecological niches that limit their natural distribution area. It is known that biotic stress is one of the main environmental factors limiting the introduction of valuable plant species – possible sources of production of unique metabolites. Limiting environmental factors have a direct impact on the growth, development and productivity of secondary plant metabolism. Stress-resistant and highly productive plants can be created using cell biotechnology methods, in particular, in vitro cell selection, which is carried out on a callus culture. Therefore, at the first stage, it is necessary to develop in vitro technology for the rapid production of well-proliferating callus tissue with an increased content of secondary metabolites.
Purpose of the study. To study the effect of the vegetation and photoperiod, endogenous polyphenols on the formation of the callus tissue of sequoia (Ginkgo biloba (L.)) in vitro.
Material and methods. The object of the study was Ginkgo biloba (L.) plants. Callus tissue was obtained from segments of leaf blades that were isolated from intact plants. Explants were cultured on WPM nutrient medium containing BAP 2.0 mg/l and 2.0 mg/L 2,4-D. The localization of phenolic compounds was studied in Ginkgo leaves, as well as in callus tissue obtained under different lighting conditions. To do this, histochemical methods were used: for the sum of phenolic compounds, the material was stained with 0.08% Fast Blue reagent raster, a reaction with vanillin reagent in hydrochloric acid vapor was used to study the localization of flavans (catechins and proanthocyanidins).
Results. The intensity of callus tissue formation, its consistency and color were significantly influenced by the growing season and the applied lighting regime. A well-proliferating callus tissue of light yellow color was obtained by cultivation with no light source. At a 16-hour photoperiod, a dark brown callus tissue with green inclusions was formed, the growth of which was inhibited during cultivation. Explants collected in spring and summer had the best proliferative activity. As a rule, the formation of callus tissue occurred in places of minor localization of phenolic compounds. In initiated callus cultures grown in the dark, the content of cells with phenolic compounds was lower than that of callus obtained in the presence of lighting. Extracts of G. biloba L. callus cultures they exhibit low cytotoxicity and can be widely used as a safe raw material for phytopharmacognosy.
Palavras-chave
Texto integral
##article.viewOnOriginalSite##Sobre autores
S. Zaitseva
Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazeva
Autor responsável pela correspondência
Email: smzaytseva@yandex.ru
ORCID ID: 0000-0001-9137-3774
Ph.D. (Biol.), Associate Professor, Department of Biotechnology
Rússia, 49 Timiryazevskay St., Moscow, 127434Е. Kalashnikova
Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazeva
Email: kalash0407@mail.ru
ORCID ID: 0000-0002-2655-1789
Dr.Sc. (Biol.), Professor, Department of Biotechnology
Rússia, 49 Timiryazevskay St., Moscow, 127434R. Kirakosyan
Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazeva
Email: mia41291@mail.ru
ORCID ID: 0000-0002-5244-4311
Ph.D. (Biol.), Associate Professor, Department of Biotechnology
Rússia, 49 Timiryazevskay St., Moscow, 127434А. Balakina
Federal Research Center for Problems of Chemical Physics and Medical Chemistry
Email: stasya.balakina@gmail.com
ORCID ID: 0000-0002-5952-9211
Ph.D. (Biol.), Senior Research Scientist, Laboratory of Molecular Biology
Rússia, 1 Semenov avenue, Chernogolovka, Moscow region, 142432Bibliografia
- Alekseeva G.M., Belodubrovskaya G.A., Blinova K.F. et al. Farmakognoziya. Lekarstvennoe siriyo rastitelnogo i zhivotnogo proiachozhdeniya. Pod red. G.P. Yakovlevoy. Sankt-Petersburg. SpetcLit 2013. (In Russ.).
- Nosov A.M. Regulyatsiya sintesa vtorichnich soedineniy v culture kletok rasteniy. Biologiya kultiviruemich kletok i biotekchnologiya rasteniy. R.G. Butenko (red.). M. Nauka. 1991. (In Russ.).
- Vasilev V.G., Prokopiev A.S., Kalabin G.A. Identificatciya terpenovikch laktonov i flavanolglikozidov v preparatakch na osnove ekstraktov Ginkgo biloba i noviy sposob polukolichestvennoy ocenki soderzhaniy flavanolglikozidov metodom spektroscopii YMR 1H. Kchimiya rastitelnogo siriya. 2016; 3: 85–93. (In Russ.).
- Kurkin A.V., Bulankin D.G., Daeva E.D., Kadencev V.I. Flavanoidi listev Ginkgo biloba. Kchimiya rastitelnogo siriya. 2012; 2: 85–88. (In Russ.).
- Tukavkina N.A. Bioflavanoidi. M.: Izdatelskiy dom "Russkiy vrach". 2002. 56 c. (In Russ.).
- Kuznetsova S.M., Kuznetsov V.V., Shulzhenko D.V. Primenenie ekstrakta Ginkgo biloba v sisteme reabilitacii bolnich, perenesshikch insult. Mezhdunarodniy nevrologicheskiy zhurnal. 2016; 5(83): 111–114. (In Russ.).
- Katunina E.A. Ginkgo biloba: itogi poluvekovogo opita primeneniya. Polimodalnost effektov Ginkgo biloba: eksperementalnie i klinicheskie issledovaniya. Nevrologiya i revmatologiya. Prilozhenie k zhurnalu Consilium Medicum. – 2013. – № 2. – С. 53–57. 2. (In Russ.).
- Kalashnikova E.A., Kletochnaya inzheneriya rasteniy. Uchebnik i praktikum dliya vuzov 2-e izdanie. M.: OOO “Izdatelstvo URAIT” 2022. 333s. (In Russ.).
- Zaprometov M.N. Fenolnie soedineniya i ikch rol v zhizni rasteniya. LVI Timiryazevskie chteniya. M.: Nauka. 1996. 45 с. (In Russ.).
- Justine Laoué, Catherine Fernandez and Elena Ormeño Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. Plants. 2022; 11: 172.
- Xie Y., Xu D., Cui W., Shen W. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. Journal of Experimental Botany. 2012; 63(10): 3869–3883.
- Petukchova I.P., Denisov N.I. Opit introdukcii Ginkgo biloba L. na yuge dalnego vostoka Rossii. Vestnik krasnoyarskogo gosudarstvennogo agrarnogo universiteta. 2012; 1: 71–75. (In Russ.).
- Nicholas Tuatahi Davies, Hsin-Fu Wu, Clemens Michael Altaner The chemistry and bioactivity of various heartwood extracts from redwood (Sequoia sempervirens) against two species of fungi. New Zealand Journal of Forestry Science. 2014; 044, Articenumber: 17.
- Volinets A.P. Fenolnie soedineniya v zhizni rasteniy. Minsk: Belarus. Navyka. 2013; 283 с. (In Russ.).
- Szewczyk A., Kwiecień I., Grabowski M. et al. Phenylalanine Increases the Production of Antioxidant Phenolic Acids in Ginkgo biloba Cell Cultures. Molecules. 2021; 26: 4965.
- Nosov A.M. Ispolzovanie kletochnikch tekchnologiy dliya promishlennogo polucheniya biologicheski aktivnikch veshestv rastitelnogo proiskchozhdeniya. Biotechnology. 2010; 5: 8–28. (In Russ.).
- Qingjie Wang, Yang Jiang, Xinyu Mao et al. Integration of morphological, physiological, cytological, metabolome and transcriptome analyses reveal age inhibited accumulation of flavonoid biosynthesis in Ginkgo biloba leaves. Industrial Crops and Products. 2022; 187(Part B): 115405.
- Teplitskaya L.M., Chmeleva S.I., Buraga I.A., Buraga A.M. Osobennosti kallusogeneza v culture Ginkgo biloba L. Bulleten Nikitskogo botanicheskogo sada. 2010; vipusk 101. (In Russ.).
- McCown B.H., Lloyd G. Woody Plant Medium (WPM) – A Mineral Nutrient Formulation for Microculture of Woody Plant Species. HortScience. 1981; 16: 453-453.
- Soukupova J., Cvikrova M., Albrechtova J. et al. Histochemical and Biochemical Approaches to the Study of Phenolic Compounds and Peroxidases in Needles of Norway Spruce (Picea abies). New Phytol. 2000; 146: 403–414.
- Babushkina E.V., Smirnov P.D., Kostina O.V. i dr. Gistochimiya trikchom oficinalnikch predstaviteley semeystva Lamiaceae. Medicinskiy almanac. 2017; 3(48). (In Russ.).
- Lakin G.F. Biometriya: ucheb. posobie dliya boil. spets. vuzov. M.: Visshaya shkola. 1990; 352 с. (In Russ.).
- Zaytseva S.M., Kalashnikova E.A., Kirakosiyan R.N. Vliyanie enogennikch polifenolov, fotoperioda I mineralnogo sostava pitatelnoy sredi na formirovanie kallusnoy tkani reliktovikch golosemennikch rasteniy Sequoia sempervirens L. Voprosi biologicheskoy, farmatsevticheskoy i meditsinskoy kchimii. 2023; 26(3): 46–57. (In Russ.).
- Horbowicz M., Wiczkowski W., Góraj-Koniarska J. et al. Effect of Methyl Jasmonate on the Terpene Trilactones, Flavonoids, and Phenolic Acids in Ginkgo biloba L. Leaves: Relevance to Leaf Senescence. Molecules. 2021 Aug 2; 26(15): 4682. doi: 10.3390/molecules26154682.
- Timashova L.V., Matsneva O.V., Shakchova V.V., Kchrova T.M. Osobennosty pervogo etapa klonalnogo mikrorazmnozheniya immunnikch sortov yablony. Sovremennoye sadovodstvo – Contemporary horticulture. 2018; 3: 114–121. doi: 10.24411/2312-6701-2018-10315. (In Russ.).
- Bulankin D.G., Zhirnova A.I., Kurkin A.V. et al. Anatomo-morfologicheskoe issledovanie listev ginkgo bilobo. Meditsinskiy Almanach. 2011; 6: 249–252. (In Russ.).
- Tomilova S.V., Globa E.B., Demidova E.V., Nosov A.M. Vtorichniy metabolism v culture in vitro Taxus spp. Fisiologiya rasteniy. 2023; 70(3): 227–240. (In Russ.).
- Dubravina G.A., Zaytseva S.M., Zagoskina N.V. Ismeneniya v obrazovanii i lokalisastii fenolnikch soedineniy pri dedifferentsiatsii tkaney tissa yagodnogo I tissa kanadskogo v usloviyach in vitro. Fisiologiya rasteniy 2005; 52: 755–762. (In Russ.).
- Saslowsky D.E., Warek U., Winkel B.S.J. Nuclear localization of flavonoid enzymes in Arabidopsis. Journal of Biological Chemistry. 2005; 280(I. 25): 23735–23740. (In Russ.).
- Beibei Zhao, Li Wang, Siyu Pang et al. UV-B promotes flavonoid synthesis in Ginkgo biloba leaves. Industrial Crops and Products. 2020; 151: 112483.
- Yuan Z., Tian Y., He F. et al. Endophytes from Ginkgo biloba and their secondary metabolites. Chin Med. 2019; 14(51); https://doi.org/10.1186/s13020-019-0271-8.
Arquivos suplementares
