Balance impairment as a limiting factor of functioning after stroke: a contemporary interdisciplinary approach to rehabilitation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Postural control (PC) impairment is a consequence of acute cerebrovascular events leading to increased disability, limiting functioning, increasing fall risk, and causing a sustained decline in quality of life. The relevance of this review is determined by the need to implement a comprehensive interdisciplinary approach to stroke rehabilitation integrating modern diagnostic and PC correction methods, which is of particular importance given the rising number of patients with this condition and limited effectiveness of traditional rehabilitation strategies. Based on the analysis of 76 scientific publications, contemporary concepts of the pathophysiology of post-stroke balance impairment are systematized; central nervous system dysfunction, proprioceptive deficit, and impaired cortical activation play a key role in its genesis. Valid and reliable assessment tools are discussed, including standardized clinical scales (Berg Balance Scale, Timed Up and Go Test) and instrumental techniques (stabilography, 3D gait analysis, inertial measurement unit–based systems), as well as assessment methods aligned with the International Classification of Functioning framework. The effectiveness of interdisciplinary rehabilitation programs using innovative technological solutions, such as robotic therapy, biofeedback-based systems, and virtual reality, has been demonstrated, showing positive effects not only on physiological balance parameters, but also on activity and participation levels. Particular attention is given to combined kinesitherapeutic approaches such as proprioceptive neuromuscular facilitation, and to integrating psychological support to address fear of falling.

About the authors

Aleksandra L. Gaganova

Sechenov First Moscow State Medical University

Author for correspondence.
Email: aleksandragaganova64@gmail.com
ORCID iD: 0009-0004-2317-1678
Russian Federation, Moscow

Marina A. Kravtsova

Sechenov First Moscow State Medical University

Email: marinamarinakravtsova2001@yandex.ru
ORCID iD: 0009-0002-2771-7725
Russian Federation, Moscow

Ekaterina E. Pavlova

Saint Petersburg State University

Email: catypa0378@gmail.com
ORCID iD: 0009-0002-4271-0134
Russian Federation, Saint Petersburg

Ruslan A. Gaynullin

Bashkir State Medical University

Email: gaynullin.88@gmail.com
ORCID iD: 0000-0002-5441-7480
SPIN-code: 7094-7733

Cand. Sci. (Biology), Associate Professor

Russian Federation, Ufa

Sadiyat D. Jamalutinova

Bashkir State Medical University

Email: d.sadiat11022004@gmail.com
ORCID iD: 0009-0005-4677-6191
Russian Federation, Ufa

Yulia R. Samodelkina

Bashkir State Medical University

Email: samodelkina.2003@mail.ru
ORCID iD: 0009-0008-0598-4850
Russian Federation, Ufa

Maya F. Ikhsanova

Bashkir State Medical University

Email: maya.yakir@icloud.com
ORCID iD: 0009-0008-3386-9251
Russian Federation, Ufa

Andrey V. Sergeev

Bashkir State Medical University

Email: an2reys01@gmail.com
ORCID iD: 0009-0005-6828-3566
Russian Federation, Ufa

Kosimjon I. Boltaboev

Bashkir State Medical University

Email: bki20002307gmail@mail.ru
ORCID iD: 0009-0008-5096-8972
Russian Federation, Ufa

Sardorbek B. Makhamadaliev

Bashkir State Medical University

Email: sardorbekmahamadaliev2002@gmail.com
ORCID iD: 0009-0005-4610-3050
Russian Federation, Ufa

Azaliya Z. Farrakhova

Bashkir State Medical University

Email: farrahovaazaliaa1@gmail.com
ORCID iD: 0009-0003-3939-8669
Russian Federation, Ufa

Renata R. Alsynbaeva

Bashkir State Medical University

Email: rena.alsynbaeva24@mail.ru
ORCID iD: 0009-0004-5667-0764
Russian Federation, Ufa

Dzhamilya Z. Gasanova

Dagestan State Medical University

Email: gasanodjamila@yandex.ru
ORCID iD: 0009-0001-9724-7389
Russian Federation, Makhachkala

Evelina A. Mishina

Bashkir State Medical University

Email: evelina.mishina@bk.ru
ORCID iD: 0009-0004-4178-5745
Russian Federation, Ufa

References

  1. Strilciuc S, Grad DA, Radu C, et al. The economic burden of stroke: a systematic review of cost of illness studies. J Med Life. 2021;14(5):606–619. doi: 10.25122/jml-2021-0361
  2. Bakaeva DI, Mamatova EM, Musaeva KH. Epidemiological characteristics and etiopathogenetic variants of the modern course of hemorrhagic stroke. Kyrgyz State Med Acad I.K. Akhunbaeva. 2023;3(2). doi: 10.54890/1694-6405_2023_2_48
  3. Chen Y, Du H, Song M, et al. Relationship between fear of falling and fall risk among older patients with stroke: a structural equation modeling. BMC Geriatr. 2023;23:647. doi: 10.1186/s12877-023-04298-y
  4. Conrad J, Habs M, Boegle R, et al. Global multisensory reorganization after vestibular brain stem stroke. Ann Clin Transl Neurol. 2020;7(10):1788–1801. doi: 10.1002/acn3.51161
  5. La Scaleia B, Siena A, D’Onofrio L, et al. Deterioration of vestibular motion perception: a risk factor for postural instability and falls in elderly with type 2 diabetes. Diabetes Metab Res Rev. 2024;40(7):e3845. doi: 10.1002/dmrr.3845
  6. Lim C. Multi-sensorimotor training improves proprioception and balance in subacute stroke patients: a randomized controlled pilot trial. Front Neurol. 2019;10:157. doi: 10.3389/fneur.2019.00157
  7. Niewolak K, Antkiewicz J, Piejko L, et al. Assessment of Postural Control and Gait in Patients with Chronic Stroke After Treadmill Perturbation-Based Training: A Randomized Clinical Trial. J Clin Med. 2025;14(17):6142. doi: 10.3390/jcm14176142
  8. Samartsev IN, Zhivolupov SA, Butakova YS. Modern concepts of neurophysiological mechanisms and clinical manifestations of statodynamic disorders, possibilities of their correction. Clin Pharmacol Ther. 2019;28(2):93–98. doi: 10.32756/0869-5490-2019-2-93-98
  9. Peterka RJ, Murchison CF, Parrington L, et al. Implementation of a central sensorimotor integration test for characterization of human balance control during stance. Front Neurol. 2018;9:1045. doi: 10.3389/fneur.2018.01045
  10. Mahmoudzadeh A, Nakhostin Ansari N, Naghdi S, et al. Role of spasticity severity in the balance of post-stroke patients. Front Hum Neurosci. 2021;15:783093. doi: 10.3389/fnhum.2021.783093
  11. Damulin IV, Tardov MV. Clinical and pathogenetic features of cerebellar ataxia. Trudnyi Patsient. 2020;18(10):17–23. doi: 10.24411/2074-1995-2020-10067 EDN: IDMEJP
  12. Gao S, Yu Z, Liu X. The correlation between lower limb spasticity and proprioceptive dysfunction in post-stroke patients. Front Neurol. 2025;16:1634382. doi: 10.3389/fneur.2025.1634382
  13. Li S, Li K, Huang Z, et al. The relationship between balance and visuospatial attention on hemispheric stroke Survivors: A study of egocentric and allocentric neural processing. NeuroImage Clin. 2025;103861. doi: 10.1016/j.nicl.2025.103861
  14. Gammeri R, Iacono C, Ricci R, et al. Unilateral Spatial Neglect After Stroke: Current Insights. Neuropsychiatr Dis Treat. 2020;16:131–152. doi: 10.2147/NDT.S171461
  15. He J, Gong C, Zhu X, et al. Cortical activation changes in supratentorial stroke patients during posture-cognition dual task. Front Neurol. 2025;16:1521687. doi: 10.3389/fneur.2025.1521687
  16. Lim SB, Peters S, Yang CL, et al. Frontal, sensorimotor, and posterior parietal regions are involved in dual-task walking after stroke. Front Neurol. 2022;13:904145. doi: 10.3389/fneur.2022.904145
  17. Wang Q, Dai W, Xu S, et al. Brain activation of the PFC during dual-task walking in stroke patients: A systematic review and meta-analysis of functional near-infrared spectroscopy studies. Front Neurosci. 2023;17:1111274. doi: 10.3389/fnins.2023.1111274
  18. Kohli S, Fitzgibbon-Collins LK, Luan S, et al. Exploring the relationship between prefrontal cortex activation, standing balance, and fatigue in people post-stroke: A fNIRS study. NeuroRehabilitation. 2025;10538135251341124. doi: 10.1177/105381352513411
  19. Guryanova EA, Kovalchuk VV, Tikhoplav OA, et al. Functional electrical stimulation in the restoration of walking after a stroke. A review of the scientific literature. Phys Rehabil Med Med Rehabil. 2020;2(3):244–262. doi: 10.36425/rehab34831 EDN: DIKKPO
  20. Khatkova SE, Kostenko EV, Akulov MA, et al. Modern aspects of the pathophysiology of gait disorders in post-stroke patients and features of their rehabilitation. S.S. Korsakov J Neurol Psychiatry. 2019;119(12):43–50. doi: 10.17116/jnevro201911912143 EDN: UDKGIK
  21. Compagnat M, Mandigout S, Batcho CS, et al. Validity of wearable actimeter computation of total energy expenditure during walking in post-stroke individuals. Ann Phys Rehabil Med. 2020;63(3):209–215. doi: 10.1016/j.rehab.2019.07.002
  22. Roelofs JM, Zandvliet SB, Schut IM, et al. Mild stroke, serious problems: limitations in balance and gait capacity and the impact on fall rate, and physical activity. Neurorehabil Neural Repair. 2023;37(11–12):786–798. doi: 10.1177/15459683231207360
  23. Dalli LL, Borschmann K, Cooke S, et al. Fracture risk increases after stroke or transient ischemic attack and is associated with reduced quality of life. Stroke. 2023;54(10):2593–2601. doi: 10.1161/STROKEAHA.123.043094
  24. Pin TW, Winser SJ, Chan WLS, et al. Association between fear of falling and falls following acute and chronic stroke: a systematic review with meta-analysis. J Rehabil Med. 2024;56:jrm18650. doi: 10.2340/jrm.v56.18650
  25. Chen M, Pan Z, Lin C. Mediating effect analysis: How frailty affects fear of falling and fall risk in elderly patients with ischemic stroke. Medicine (Baltimore). 2025;104(40):e45035. doi: 10.1097/MD.0000000000045035
  26. Gobezie M, Kassa T, Suliman J, et al. Balance impairment and associated factors among stroke survivors in public hospitals of Amhara regional state: a multicenter cross-sectional study. BMC Neurol. 2024;24:387. doi: 10.1186/s12883-024-03885-9
  27. Ghaffari A, Rostami HR, Akbarfahimi M. Predictors of instrumental activities of daily living performance in patients with stroke. Occup Ther Int. 2021;2021:6675680. doi: 10.1155/2021/6675680
  28. Tsiakiri A, Plakias S, Kokkotis C, et al. Instrumental Activities of Daily Living in Neurocognitive Disorders: Determinants and Clinical Implications for Health Promotion. Brain Sci. 2025;15(4):417. doi: 10.3390/brainsci15040417
  29. Einstad MS, Thingstad P, Lydersen S, et al. Physical performance and cognition as predictors of instrumental activities of daily living after stroke: a prospective multicenter cohort study. Arch Phys Med Rehabil. 2022;103(7):1320–1326. doi: 10.1016/j.apmr.2022.01.153
  30. Alghadir AH, Al-Eisa ES, Anwer S, et al. Reliability, validity, and responsiveness of three scales for measuring balance in patients with chronic stroke. BMC Neurol. 2018;18:141. doi: 10.1186/s12883-018-1146-9
  31. Kostenko EV, Petrova LV, Pogonschenkova IV. Validation of the Motor Activity Assessment Scale (Tinetti Test) in Russia for patients after stroke. Bulletin of rehabilitation medicine. 2023;22(3):29–39. doi: 10.38025/2078-1962-2023-22-3-29-39 EDN: AWZVRC
  32. Miyata K, Tamura S, Kobayashi S, et al. Berg Balance Scale is a Valid Measure for Plan Interventions and for Assessing Changes in Postural Balance in Patients with Stroke. J Rehabil Med. 2022;54:jrm00359. doi: 10.2340/jrm.v54.4443
  33. Önal B, Köse N, Önal ŞN, et al. Validity and Reliability of the Berg Balance Scale in Different Tele-Assessment Methods in Patients With Stroke. J Eval Clin Pract. 2025;31(4):e70141. doi: 10.1111/jep.70141
  34. Soto-Varela A, Rossi-Izquierdo M, del-Río-Valeiras M, et al. Modified timed up and go test for tendency to fall and balance assessment in elderly patients with gait instability. Front Neurol. 2020;11:543. doi: 10.3389/fneur.2020.00543
  35. Fiedorová I, Mrázková E, Zádrapová M, et al. Receiver Operating Characteristic Curve Analysis of the Somatosensory Organization Test, Berg Balance Scale, and Fall Efficacy Scale–International for Predicting Falls in Discharged Stroke Patients. Int J Environ Res Public Health. 2022;19(15):9181. doi: 10.3390/ijerph19159181 EDN: KGRSWX
  36. Shim D, Park D, Yoo B, et al. Evaluation of sitting and standing postural balance in cerebral palsy by center-of-pressure measurement using force plates: Comparison with clinical measurements. Gait Posture. 2022;92:110–115. doi: 10.1016/j.gaitpost.2021.11.024
  37. Stepanyan IV, Grokhovskiy SS, Savkin MA. Identification of pathobiomechanical markers of statokinesiograms using neural network identification of post-stroke condition. Russ J Biomech. 2023;27(1):98–108. doi: 10.15593/RZhBiomeh/2023.1.09 EDN: PJJKNC
  38. Chen N, Xiao X, Hu H, et al. Identify the alteration of balance control and risk of falling in stroke survivors during obstacle crossing based on kinematic analysis. Front Neurol. 2019;10:813. doi: 10.3389/fneur.2019.00813
  39. Cho J, Ha S, Lee J, et al. Stroke walking and balance characteristics via principal component analysis. Sci Rep. 2024;14:10465. doi: 10.1038/s41598-024-60943-5
  40. Dolganova TI, Popkov DA, Dolganov DV, et al. Indicators of the kinetics of locomotor stereotypes in healthy children in different speed ranges of movement. Genij Ortop. 2022;28(3):417–424. doi: 10.18019/1028-4427-2022-28-3-417-424 EDN: ABFMRF
  41. Alammari BJ, Schoenwether B, Ripic Z, et al. Validity of AI-Driven Markerless Motion Capture for Spatiotemporal Gait Analysis in Stroke Survivors. Sensors. 2025;25(17):5315. doi: 10.3390/s25175315
  42. Latorre J, Colomer C, Alcañiz M, et al. Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. J NeuroEngineering Rehabil. 2019;16:97. doi: 10.1186/s12984-019-0568-y
  43. Felius RAW, Geerars M, Bruijn SM, et al. Reliability of IMU-based balance assessment in clinical stroke rehabilitation. Gait Posture. 2022;98:62–68. doi: 10.1016/j.gaitpost.2022.08.005
  44. Felius RAW, Geerars M, Bruijn SM, et al. Reliability of IMU-Based Gait Assessment in Clinical Stroke Rehabilitation. Sensors. 2022;22(3):908. doi: 10.3390/s22030908
  45. Martino Cinnera A, Picerno P, Bisirri A, et al. Upper limb assessment with inertial measurement units according to the international classification of functioning in stroke: a systematic review and correlation meta-analysis. Top Stroke Rehabil. 2023;31(1):66–85. doi: 10.1080/10749357.2023.2197278
  46. Singh A, Sahni RK, Singh H. Comparison Of Activity Limitation And Participation Restriction Status Of Individuals With Right And Left Cerebral Hemisphere Stroke. International Journal of Advanced Research and Publications. 2018;2(12):37–42.
  47. Ivanova GE, Melnikova EV, Shamalov NA, et al. Use of ICF and assessment scales in medical rehabilitation. Bulletin of rehabilitation medicine. 2018;(3):14–20. EDN: UTXLCY
  48. Shmonin AA, Maltseva MN, Solovyeva LN, et al. The role of multidisciplinary rehabilitation team specialists in improving the quality of rehabilitation diagnostics. Bulletin of the Ivanovo state medical academy. 2023;28(4):5–9. doi: 10.52246/1606-8157_2023_28_4_5 EDN: DMUOIL
  49. Hugues A, Di Marco J, Ribault S, et al. Limited evidence of physical therapy on balance after stroke: A systematic review and meta-analysis. PLoS One. 2019;14(8):e0221700. doi: 10.1371/journal.pone.0221700
  50. Wiśniowska-Szurlej A, Leszczak J, Brożonowicz J, et al. Effectiveness of a rehabilitation program involving functional proprioceptive stimulation for postural control and motor recovery among stroke patients: a double-blinded, randomized, controlled trial. J NeuroEngineering Rehabil. 2025;22:147. doi: 10.1186/s12984-025-01678-w
  51. de Azevedo JA, Barbosa FDS, Seixas VM, et al. Effects of constraint-induced movement therapy on activity and participation after a stroke: Systematic review and meta-analysis. Front Hum Neurosci. 2022;16:987061. doi: 10.3389/fnhum.2022.987061
  52. Soni M, Patel P, Amin D, et al. Gender Specific Comparison of Activity Limitation, Participation Restriction and Community Re Integration among Stroke Patients. Indian J Physiother Occup Ther. 2019;13(1). doi: 10.5958/0973-5674.2019.00031.5
  53. Shahid J, Kashif A, Shahid MK. A Comprehensive Review of Physical Therapy Interventions for Stroke Rehabilitation: Impairment-Based Approaches and Functional Goals. Brain Sci. 2023;13(5):717. doi: 10.3390/brainsci13050717
  54. Ranford J, Asiello J, Cloutier A, et al. Interdisciplinary stroke recovery research: the perspective of occupational therapists in acute care. Front Neurol. 2019;10:1327. doi: 10.3389/fneur.2019.01327
  55. Baulina ME, Varako NA, Zinchenko YP, et al. Neuropsychological diagnosis and rehabilitation of patients with apraxia in brain lesions of various etiologies. Natl Psychol J. 2023;17(1):3–17. doi: 10.11621/npj.2023.0101 EDN: LLASAW
  56. Lauesen JD, Larsen K, Lykke JL, et al. Healthcare Professionals’ Experiences with Functional Independence Measure (FIM) as a Structured Framework for Interprofessional Team Meetings in Danish Stroke Rehabilitation: A Qualitative Cross-Sectoral Collaborative Study. Rehabil Res Pract. 2023;2023:6660296. doi: 10.1155/2023/6660296
  57. Loro A, Borg MB, Battaglia M, et al. Balance Rehabilitation through Robot-Assisted Gait Training in Post-Stroke Patients: A Systematic Review and Meta-Analysis. Brain Sci. 2023;13(1):92. doi: 10.3390/brainsci13010092
  58. Rojek A, Mika A, Oleksy Ł, et al. Effects of exoskeleton gait training on balance, load distribution, and functional status in stroke: a randomized controlled trial. Front Neurol. 2020;10:1344. doi: 10.3389/fneur.2019.01344
  59. Choi W. Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients. Int J Environ Res Public Health. 2022;19(10):5814. doi: 10.3390/ijerph19105814
  60. Zhang Y, Zhao W, Wan C, et al. Exoskeleton rehabilitation robot training for balance and lower limb function in sub-acute stroke patients: a pilot, randomized controlled trial. J NeuroEngineering Rehabil. 2024;21(1):98. doi: 10.1186/s12984-024-01391-0
  61. Kodama K, Yasuda K, Kuznetsov NA, et al. Balance training with a vibrotactile biofeedback system affects the dynamical structure of the center of pressure trajectories in chronic stroke patients. Front Hum Neurosci. 2019;13:84. doi: 10.3389/fnhum.2019.00084
  62. Kim H, Kim H, Shin W-S. Effects of Vibrotactile Biofeedback Providing Real-Time Pressure Information on Static Balance Ability and Weight Distribution Symmetry Index in Patients with Chronic Stroke. Brain Sci. 2022;12(3):358. doi: 10.3390/brainsci12030358
  63. Skvortsov DV, Kaurkin SN, Ivanova GE. A Study of Biofeedback Gait Training in Cerebral Stroke Patients in the Early Recovery Phase with Stance Phase as Target Parameter. Sensors. 2021;21(21):7217. doi: 10.3390/s21217217 EDN: MKCCUM
  64. He T, Zhang M, Chen X, et al. Comparing the effects of virtual reality and traditional balance training on trunk control, sitting balance, and activities of daily living in patients with stroke: a randomized controlled trial. BMC Sports Sci Med Rehabil. 2025;17(1):294. doi: 10.1186/s13102-025-01323-y
  65. Turovinina EF, Plotnikov DN. Experience of using immersive virtual reality (VIARR100) in the rehabilitation of patients with ischemic stroke in the acute period. Sovrem Vopros Biomed. 2024;8(3):227–234. doi: 10.24412/2588-0500-2024_08_03_25 EDN: GPYRJV
  66. Anwar N, Karimi H, Ahmad A, et al. Virtual reality training using Nintendo Wii games for patients with stroke: randomized controlled trial. JMIR Serious Games. 2022;10(2):e29830. doi: 10.2196/29830
  67. Cikajlo I, Rudolf M, Mainetti R, et al. Multi-exergames to set targets and supplement the intensified conventional balance training in patients with stroke: a randomized pilot trial. Front Psychol. 2020;11:572. doi: 10.3389/fpsyg.2020.00572
  68. Rajasekaran K. Effectiveness Of Proprioceptive Neuromuscular Facilitation (PNF) Exercises Of Pelvis Versus Lateral Weight Shifting Exercises On Trunk Motor Control And Balance Among Post-Stroke Patients. Int J Environ Sci. 2025;11(23s).
  69. Chaturvedi P, Singh AK, Kulshreshtha D, et al. Proprioceptive neuromuscular facilitation (PNF) vs. task specific training in acute stroke: the effects on neuroplasticity. MOJ Anat Physiol. 2018;5(2):154–158. doi: 10.15406/mojap.2018.05.00181
  70. Chaturvedi P, Singh AK, Tiwari V, et al. Post-stroke BDNF concentration changes following proprioceptive neuromuscular facilitation (PNF) exercises. J Family Med Prim Care. 2020;9(7):3361–3369. doi: 10.4103/jfmpc.jfmpc_1051_19
  71. Zheng K, Li L, Zhou Y, et al. Optimal proprioceptive training combined with rehabilitation regimen for lower limb dysfunction in stroke patients: a systematic review and network meta-analysis. Front Neurol. 2024;15:1503585. doi: 10.3389/fneur.2024.1503585
  72. Chiaramonte R, D’Amico S, Caramma S, et al. The effectiveness of goal-oriented dual task proprioceptive training in subacute stroke: a retrospective observational study. Ann Rehabil Med. 2024;48(1):31–41. doi: 10.5535/arm.23086
  73. Baricich A, Borg MB, Battaglia M, et al. High-Intensity Exercise Training Impact on Cardiorespiratory Fitness, Gait Ability, and Balance in Stroke Survivors: A Systematic Review and Meta-Analysis. J Clin Med. 2024;13(18):5498. doi: 10.3390/jcm13185498
  74. Caña-Pino A, Pesado-Fernández L. Occupational Therapy Interventions for Fall Prevention in Older Adults: A Systematic Review of Multimodal Strategies. Physiologia. 2025;5(3):33. doi: 10.3390/physiologia5030033
  75. García-Pérez P, Rodríguez-Martínez MC, Gallardo-Tur A, et al. Early Occupational Therapy Intervention post-stroke (EOTIPS): A randomized controlled trial. PLoS One. 2024;19(8):e0308800. doi: 10.1371/journal.pone.0308800
  76. Miryutova NF, Mikhaylova LV, Minchenko NN. Balance platform training in motor rehabilitation of patients after stroke: a prospective randomized study. Bulletin of rehabilitation medicine. 2023;22(1):28–35. doi: 10.38025/2078-1962-2023-22-1-28-35 EDN: EMQUNU

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).