THE CURRENT STRATEGY OF RISK ASSESSMENT AND PREVENTION OF BONE FRACTURES AMONG THE EMPLOYEES AND WORKERS OF MOSCOW


Cite item

Full Text

Abstract

The present study was designed to develop an optimal strategy for risk assessment and prevention of bone fractures among the employees and workers of Moscow region, who were not previously examined, and did not receive anti-osteoporotic therapy. The study included 737 women aged 45 to 64 years (mean age 53,9, ± 4,7 years). Evaluation of ten-year risk of bone fractures was carried out using the mathematical analysis of the FRAX system (John A. Kanis, 2008). Evaluation of bone mineral density (BMD) was performed using dual energy x-ray absorption densitometry (DEXA) «HOLOGIC» with the definition of BMD in the three areas. The condition of thoracic and lumbar spine was evaluated with the help of morphometric vertebral semi-quantitative Dzhenanta method (IVA). X-rays of thoracic and lumbar spine in lateral projection were carried out to confirm the presence of a fracture. Analyzing the data obtained it was established that in the age group 45-65 years, the method of determining the ten-year fracture risk FRAX has low sensitivity compared with standard diagnostic methods of osteoporosis and can not be recommended as the primary method for clinical examination of women of this age in spite of its low-cost and availability.

About the authors

S. B Malichenko

Российский университет дружбы народов

д-р мед. наук, проф., зав. каф. клинической и социальной гериатрии

E. A Maschenko

Российский университет дружбы народов

канд. мед. наук, доц. каф. клинической и социальной гериатрии

D. S Ogay

ГБУЗ МО Московский областной онкологический диспансер

канд. мед. наук, зав. онкологическим-гинекологическим отд-нием Балашиха

References

  1. Официальный сайт ВОЗ http://www.who.int/en/
  2. http://www.shef.ac.uk/FRAX/

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Eco-Vector



Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).