Electrical stimulation of the spinal cord: modern possibilities of application in neurorehabilitation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Injuries and disorders of the nervous system are a significant public health problem both in Russia and globally. In recent years, significant progress has been made in the development of spinal cord stimulation techniques aimed at restoring lost functions. Epidural (ESCS) and percutaneous (PSCS) spinal cord stimulation are promising approaches capable of improving motor activity and restoring sensitivity in patients with various neurological conditions. As a result of the research search, 3,887 publications were extracted from PubMed/MEDLINE databases and 1,432 publications found using Google Scholar. After the selection procedure, 66 articles were included in the review. Recent studies demonstrate that ESCS and PSCS can improve motor and sensory functions in various neurological diseases, opening up new opportunities to improve the quality of life of patients. Despite the fact that these neuromodulation methods have already proven their effectiveness in improving motor function and restoring sensory feedback, most of the work carried out so far has been in the nature of pilot studies. The successful clinical implementation of both ESCS and PSCS in the field of rehabilitation will require larger and more comprehensive studies, including home trials, to provide convincing evidence of their potential in restorative medicine. In addition, to optimize the effect on the dorsal roots of the spinal cord, it is necessary to improve existing electrode designs for ESCS. In this regard, further work and funding in the field of equipment development, stimulation protocols and scientific research for ESCS and PSCS should become priorities in the near future.

About the authors

Airat R. Galimov

Bashkir State Medical University

Author for correspondence.
Email: galimovajrat457@gmail.com
ORCID iD: 0000-0003-4403-0204
SPIN-code: 8742-4109

MD, Cand. Sci. (Medicine), associate professor

Russian Federation, Ufa

Evelina R. Tuliakova

Bashkir State Medical University

Email: Evelinatu26@gmail.com
ORCID iD: 0009-0004-2959-9480

student

Russian Federation, Ufa

Elizaveta V. Komkina

Pavlov First Saint Petersburg State Medical University

Email: Liza.Komkina@bk.ru
ORCID iD: 0009-0008-6457-0850

student

Russian Federation, Saint Petersburg

Elizaveta V. Kravchenko

Pavlov First Saint Petersburg State Medical University

Email: lizakravchenco2000@gmail.com
ORCID iD: 0009-0003-4786-6151

student

Russian Federation, Saint Petersburg

Eva D. Alshevskaya

Pavlov First Saint Petersburg State Medical University

Email: alshevskaya.2002@mail.ru
ORCID iD: 0009-0005-6720-3878

student

Russian Federation, Saint Petersburg

Aydan A. Amirova

Pavlov First Saint Petersburg State Medical University

Email: Aydan2625@gmail.com
ORCID iD: 0009-0008-9160-1122

student

Russian Federation, Saint Petersburg

Yana Yu. Penkova

Vernadsky Crimean Federal University

Email: penkovayana2003@mail.ru
ORCID iD: 0009-0007-7973-4689

student

Russian Federation, Simferopol

Dina M. Birbraer

Rostov State Medical University

Email: milky.wey.2013@yandex.ru
ORCID iD: 0009-0006-3926-5171

student

Russian Federation, Rostov-on-Don

Adilya U. Gallyamova

Bashkir State Medical University

Email: adilya.g55@gmail.com
ORCID iD: 0009-0000-8599-1963

student

Russian Federation, Ufa

Ekaterina V. Kharechko

Rostov State Medical University, Rostov-on-Don, Russia

Email: katerum2017@mail.ru
ORCID iD: 0009-0005-4136-0736

student

Russian Federation, Rostov-on-Don, Russia

Elena S. Kochkina

Smolensk State Medical University

Email: Elenakochkina745@gmail.com
ORCID iD: 0009-0009-5584-5020

student

Russian Federation, Smolensk

Khadizhat M. Magomedova

Rostov State Medical University

Email: Mhadijka2@mail.ru
ORCID iD: 0009-0008-2341-2506

student

Russian Federation, Rostov-on-Don

Lolita B. Aviyan

Rostov State Medical University

Email: lolaaviyan@gmail.com
ORCID iD: 0009-0006-8302-552X

student

Russian Federation, Rostov-on-Don

Elina F. Kharisova

Bashkir State Medical University

Email: ela_harisova@mail.ru
ORCID iD: 0009-0003-8770-6582

student

Russian Federation, Ufa

References

  1. Seleznev FA, Petrovsky MYu, Belov MD, et al. Spinal cord injury: new concepts in understanding the work of epidural stimulators and other modern treatment methods. Effective pharmacotherapy. 2024;20(34):36–42. doi: 10.33978/2307-3586-2024-20-34-36-42
  2. Borozdenko DA, Bogorodova VI, Kiseleva NM, Negrebetsky VV. Parkinson’s disease: epidemiology and pathogenesis. Russian Medicine. 2021;27(2):183–194. doi: 10.17816/0869-2106-2021-27-2-183-194
  3. Svetlichnaya AV. Epidemiological Characteristics of Inflammatory Demyelinating Diseases of the Central Nervous System Including Multiple Sclerosis. Epidemiology and Vaccinal Prevention. 2024;23(1):21–32. doi: 10.31631/2073-3046-2024-23-1-21-32
  4. Gayduk AI, Vlasov IaV. Spinal muscular atrophy in samara region. Epidemiology, classification, prospects for health care. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(12):88–93. doi: 10.17116/jnevro201911912188
  5. Kovalev VV, Bril EV, Semenov MS, et al. Spinal cord stimulation for freezing of gait in Parkinson’s disease and progressive supranuclear palsy: a case series. Almanac of Clinical Medicine. 2022;50(5):315–320. doi: 10.18786/2072-0505-2022-50-029
  6. Moshonkina TR, Pogolskaya MA, Vinogradskaya ZV, et al. Transcutaneous spinal cord electrical stimulation in motor rehabilitation of patients with spinal cord injury. Integrative Physiology. 2020;1(4):351–365. doi: 10.33910/2687-1270-2020-14-351-365
  7. Dmitriev AB, Rzaev DA, Denisova NP. Application of spinal cord stimulation in the treatment of persistent pain in failed back surgery syndrome. Neyrokhirurgiya. 2018;20(2):43–49. doi: 10.17650/1683-3295-2018-20-2-43-49
  8. Denisova NP, Rogov DYu, Rzaev DA, et al. Spinal cord stimulation in the treatment of chronic pain syndromes. Burdenko’s Journal of Neurosurgery. 2016;80(2):47–52. (In Russ., In Engl.) doi: 10.17116/neiro201680247-52
  9. Lin A, Shaaya E, Calvert JS, et al. A Review of Functional Restoration From Spinal Cord Stimulation in Patients With Spinal Cord Injury. Neurospine. 2022;19(3):703–734. doi: 10.14245/ns.2244652.326
  10. Hofstoetter US, Freundl B, Binder H, Minassian K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS One. 2018;13(1):e0192013. doi: 10.1371/journal.pone.0192013
  11. Harmsen IE, Hasanova D, Elias GJ, et al. Trends in clinical trials for spinal cord stimulation. Stereotactic and Functional Neurosurgery. 2021;99(2):123–134. doi: 10.1159/000510775
  12. Bulakh AA, Kovlyagin DE. Traumatic spinal cord disease: etiology, clinic, diagnosis, long-term consequences. Bulletin of Science. 2024;6(75):1969–1979. doi: 10.24412/2712-8849-2024-675-1969-1979
  13. Prudnikova OG, Kachesova AA, Ryabykh SO. Rehabilitation of patients in late period after spinal cord injury: a meta-analysis of literature data. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2019;16(3):8–16. doi: 10.14531/ss2019.3.8-16
  14. D’hondt N, Marcial KM, Mittal N, et al. A Scoping Review of Epidural Spinal Cord Stimulation for Improving Motor and Voiding Function Following Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2023;29(2):12–30. doi: 10.46292/sci22-00061
  15. Wagner FB, Mignardot JB, Le Goff-Mignardot CG, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563(7729):65–71. doi: 10.1038/s41586-018-0649-2.
  16. Angeli CA, Boakye M, Morton RA, et al. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. N Engl J Med. 2018;379(13):1244–1250. doi: 10.1056/NEJMoa1803588
  17. Gill ML, Grahn PJ, Calvert JS, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018;24(11):1677–1682. doi: 10.1038/s41591-018-0175-7
  18. Rowald A, Komi S, Demesmaeker R, et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med. 2022;28(2):260–271. doi: 10.1038/s41591-021-01663-5
  19. Darrow D, Balser D, Netoff TI, et al. Epidural Spinal Cord Stimulation Facilitates Immediate Restoration of Dormant Motor and Autonomic Supraspinal Pathways after Chronic Neurologically Complete Spinal Cord Injury. J Neurotrauma. 2019;36(15):2325–2336. doi: 10.1089/neu.2018.6006
  20. Peña Pino I, Hoover C, Venkatesh S, et al. Long-Term Spinal Cord Stimulation After Chronic Complete Spinal Cord Injury Enables Volitional Movement in the Absence of Stimulation. Front Syst Neurosci. 2020;14:35. doi: 10.3389/fnsys.2020.00035
  21. Rejc E, Smith AC, Weber KA, et al. Spinal Cord Imaging Markers and Recovery of Volitional Leg Movement With Spinal Cord Epidural Stimulation in Individuals With Clinically Motor Complete Spinal Cord Injury. Front Syst Neurosci. 2020;14:559313. doi: 10.3389/fnsys.2020.559313
  22. Balaguer JM, Prat-Ortega G, Verma N, et al. Supraspinal control of motoneurons after paralysis enabled by spinal cord stimulation. medRxiv [Preprint]. 2023:2023.11.29.23298779. doi: 10.1101/2023.11.29.23298779
  23. Hofstoetter US, Freundl B, Danner SM, et al. Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. J Neurotrauma. 2020;37(3):481–493. doi: 10.1089/neu.2019.6588
  24. Samejima S, Caskey CD, Inanici F, et al. Multisite Transcutaneous Spinal Stimulation for Walking and Autonomic Recovery in Motor-Incomplete Tetraplegia: A Single-Subject Design. Phys Ther. 2022;102(1):pzab228. doi: 10.1093/ptj/pzab228
  25. Zhang F, Carnahan J, Ravi M, et al. Combining Spinal Cord Transcutaneous Stimulation with Activity-based Training to Improve Upper Extremity Function Following Cervical Spinal Cord Injury. Annu Int Conf IEEE Eng Med Biol Soc. 2023;2023:1–4. doi: 10.1109/EMBC40787.2023.10340976
  26. Oh J, Scheffler MS, Mahan EE, et al. Combinatorial Effects of Transcutaneous Spinal Stimulation and Task-Specific Training to Enhance Hand Motor Output after Paralysis. Top Spinal Cord Inj Rehabil. 2023;29(Suppl):15–22. doi: 10.46292/sci23-00040S
  27. Chandrasekaran S, Bhagat NA, Ramdeo R, et al. Targeted transcutaneous spinal cord stimulation promotes persistent recovery of upper limb strength and tactile sensation in spinal cord injury: a pilot study. Front Neurosci. 2023;17:1210328. doi: 10.3389/fnins.2023.1210328
  28. Inanici F, Brighton LN, Samejima S, et al. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury. IEEE Trans Neural Syst Rehabil Eng. 2021;29:310–319. doi: 10.1109/TNSRE.2021.3049133
  29. Moshonkina TR, Pogolskaya MA, Vinogradskaya ZV, et al. Transcutaneous spinal cord electrical stimulation in motor rehabilitation of patients with spinal cord injury. Integrative Physiology. 2020;1(4):351–365. doi: 10.33910/2687-1270-2020-1-4-351-365
  30. Savenkova AA, Sarana AM, Shcherbak SG, et al. Noninvasive spinal cord electrical stimulation in the complex rehabilitation of patients with spinal cord injury. Problems of Balneology, Physiotherapy and Exercise Therapy. 2019;96(5):11–18. doi: 10.17116/kurort20199605111
  31. Dalrymple AN, Hooper CA, Kuriakose MG, et al. Using a high-frequency carrier does not improve comfort of transcutaneous spinal cord stimulation. J Neural Eng. 2023;20(1). doi: 10.1088/1741-2552/acabe8
  32. Mukhametova E, Militskova A, Biktimirov A, et al. Consecutive Transcutaneous and Epidural Spinal Cord Neuromodulation to Modify Clinical Complete Paralysis-the Proof of Concept. Mayo Clin Proc Innov Qual Outcomes. 2023;8(1):1–16. doi: 10.1016/j.mayocpiqo.2023.09.006
  33. Toriya VG, Vissarionov SV, Savina MV, Baindurashvili AG. Electrostimulation as a method of correction of respiratory disorders in patients with cervical spinal cord injury: A review. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(2):239–251. doi: 10.17816/PTORS191378
  34. Ignatyeva VI, Voznyuk IA, Shamalov NA, et al. Social and economic burden of stroke in Russian Federation. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(8–2):5–15. doi: 10.17116/jnevro20231230825
  35. Powell MP, Verma N, Sorensen E, et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nat Med. 2023;29(3):689–699. doi: 10.1038/s41591-022-02202-6
  36. Moon Y, Yang C, Veit NC, et al. Noninvasive spinal stimulation improves walking in chronic stroke survivors: a proof-of-concept case series. Biomed Eng Online. 2024;23(1):38. doi: 10.1186/s12938-024-01231-1
  37. Ananyev SS, Pavlov DA, Yakupov RN, et al. Transcranial Magnetic and Transcutaneous Spinal Cord Electrical Stimulation a Stroke-Patients Walking Correction: Blinded Clinical Randomised Study. Bulletin of Rehabilitation Medicine. 2023;22(4):14–22. doi: 10.38025/2078-1962-2023-22-4-14-22
  38. Pavlov DA. Percutaneous electrical stimulation of the spinal cord as a method of correcting motor functions after impaired cerebral circulation. In: Actual medical and biological problems of sports and physical culture: a collection of materials of the All-Russian conference with international participation, Volgograd, February 01–02, 2023. Part 2. Volgograd: Volgograd State Academy of Physical Culture; 2023: 254–263. EDN: MFBIOM
  39. Yakupov RN, Kotova EYu, Balykin YuM, et al. The effect of percutaneous electrical stimulation of the spinal cord and mechanotherapy on the excitability of spinal neural networks and locomotor functions of patients with cerebral circulatory disorders. Ulyanovsk Medical and Biological Journal. 2016;(4):121–128. EDN: XCSQSH
  40. Hamadyanova AU, Kuznetsov KO, Gaifullina EI, et al. Androgens and Parkinson’s disease: the role in humans and in experiment. Problems of Endocrinology. 2022;68(6):146–156. doi: 10.14341/probl13148
  41. Asriyants SV, Tomsky AA, Gamaleya AA, Pronin IN. Deep brain stimulation of the subthalamic nucleus for parkinson’s disease: awake vs asleep. Burdenko’s Journal of Neurosurgery. 2021;85(5):117–121. (In Russ., In Engl.) doi: 10.17116/neiro202185051117
  42. Singh O, Carvalho DZ, Espay AJ, et al. Spinal cord stimulation for gait impairment in Parkinson Disease: scoping review and mechanistic considerations. Pain Med. 2023;24(2):11–17. doi: 10.1093/pm/pnad092
  43. Kobayashi R, Kenji S, Taketomi A, et al. New mode of burst spinal cord stimulation improved mental status as well as motor function in a patient with Parkinson’s disease. Parkinsonism Relat Disord. 2018;57:82–83. doi: 10.1016/j.parkreldis.2018.07.002
  44. Lai Y, Pan Y, Wang L, et al. Spinal Cord Stimulation with Surgical Lead Improves Pain and Gait in Parkinson’s Disease after a Dislocation of Percutaneous Lead: A Case Report. Stereotact Funct Neurosurg. 2020;98(2):104–109. doi: 10.1159/000505707
  45. Zhou PB, Bao M. Spinal cord stimulation treatment for freezing of gait in Parkinson’s disease: A case report. Brain Stimul. 2022;15(1):76–77. doi: 10.1016/j.brs.2021.11.011
  46. Chakravarthy KV, Chaturvedi R, Agari T, et al. Single arm prospective multicenter case series on the use of burst stimulation to improve pain and motor symptoms in Parkinson’s disease. Bioelectron Med. 2020;6:18. doi: 10.1186/s42234-020-00055-3
  47. Furusawa Y, Matsui A, Kobayashi-Noami K, et al. Burst spinal cord stimulation for pain and motor function in Parkinson’s disease: A case series. Clin Park Relat Disord. 2020;3:100043. doi: 10.1016/j.prdoa.2020.100043
  48. Hubsch C, D’Hardemare V, Ben Maacha M, et al. Tonic spinal cord stimulation as therapeutic option in Parkinson disease with axial symptoms: Effects on walking and quality of life. Parkinsonism Relat Disord. 2019;63:235–237. doi: 10.1016/j.parkreldis.2019.02.044
  49. Samotus O, Parrent A, Jog M. Long-term update of the effect of spinal cord stimulation in advanced Parkinson’s disease patients. Brain Stimul. 2020;13(5):1196–1197. doi: 10.1016/j.brs.2020.06.004
  50. Fonoff ET, de Lima-Pardini AC, Coelho DB, et al. Spinal Cord Stimulation for Freezing of Gait: From Bench to Bedside. Front Neurol. 2019;10:905. doi: 10.3389/fneur.2019.00905
  51. Kovalev VV, Bril EV, Semenov MS, et al. Spinal cord stimulation for freezing of gait in Parkinson’s disease and progressive supranuclear palsy: a case series. Almanac of Clinical Medicine. 2022;50(5):315–320. doi: 10.18786/2072-0505-2022-50-029
  52. Shaglaeva YaS, Titova MA, Pashkovskaya DV, et al. Adherence to treatment in the management of patients with multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(7–2):26–32. doi: 10.17116/jnevro202412407226
  53. Boĭko AN, Gusev EI. Current algorithms of diagnosis and treatment of multiple sclerosis based on the individual assessment of the patient. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(2–2):92–106. doi: 10.17116/jnevro20171172292-106
  54. Goodwin BJ, Mahmud R, TomThundyil S, et al. The Efficacy of Spinal Cord Stimulators in the Reduction of Multiple Sclerosis Spasticity: A Narrative Systematic Review. Brain Neurorehabil. 2023;16(2):e19. doi: 10.12786/bn.2023.16.e19
  55. Hofstoetter US, Freundl B, Lackner P, Binder H. Transcutaneous Spinal Cord Stimulation Enhances Walking Performance and Reduces Spasticity in Individuals with Multiple Sclerosis. Brain Sci. 2021;11(4):472. doi: 10.3390/brainsci11040472
  56. Ponomarenko GN, Koltsov AA, Maltsev IS. General issues of spinal muscular atrophy (scientific review). Etiology, clinical features, approaches in rehabilitation and orthopedic treatment. Russian journal of the physial therapy, balneotherapy and rehabilitation. 2021;20(4):341–355. doi: 10.17816/rjpbr83799
  57. Capogrosso M, Prat-Ortega G, Ensel S, et al. Targeted Stimulation of the Sensory Afferents Improves Motoneuron Function in Humans With Spinal Muscular Atrophy. 2024: PREPRINT (Version 1). doi: 10.21203/rs.3.rs-3970994/v1
  58. Shchurova EN, Prudnikova OG, Kachesova AA, et al. Improvement of Functional State of Patients after Spinal Cord Injury During Epidural Electrical Stimulation: Prospective Study. Bulletin of Rehabilitation Medicine. 2023;22(6):28–41. doi: 10.38025/2078-1962-2023-22-6-28-41
  59. Chandrasekaran S, Nanivadekar AC, McKernan G, et al. Correction: Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees. Elife. 2021;10:e72438. doi: 10.7554/eLife.72438
  60. Nanivadekar AC, Chandrasekaran S, Helm ER, et al. Closed-loop stimulation of lateral cervical spinal cord in upper-limb amputees to enable sensory discrimination: a case study. Sci Rep. 2022;12(1):17002. doi: 10.1038/s41598-022-21264-7
  61. Nanivadekar AC, Bose R, Petersen BA, et al. Restoration of sensory feedback from the foot and reduction of phantom limb pain via closed-loop spinal cord stimulation. Nat Biomed Eng. 2024;8(8):992–1003. doi: 10.1038/s41551-023-01153-8
  62. Dalrymple AN, Bose R, Sarma D, et al. Reflex modulation and functional improvements following spinal cord stimulation for sensory restoration after lower-limb amputation. medRxiv. 2023:2023–09.
  63. Formento E, D’Anna E, Gribi S, et al. A biomimetic electrical stimulation strategy to induce asynchronous stochastic neural activity. J Neural Eng. 2020;17(4):046019. doi: 10.1088/1741-2552/aba4fc
  64. Dalrymple AN, Fisher LE, Weber DJ. A preliminary study exploring the effects of transcutaneous spinal cord stimulation on spinal excitability and phantom limb pain in people with a transtibial amputation. J Neural Eng. 2024;21(4):10.1088/1741-2552/ad6a8d. doi: 10.1088/1741-2552/ad6a8d
  65. Solinsky R, Specker-Sullivan L, Wexler A. Current barriers and ethical considerations for clinical implementation of epidural stimulation for functional improvement after spinal cord injury. J Spinal Cord Med. 2020;43(5):653–656. doi: 10.1080/10790268.2019.1666240
  66. Yoo HJ, Koo B, Yong CW, Lee KS. Prediction of gait recovery using machine learning algorithms in patients with spinal cord injury. Medicine (Baltimore). 2024;103(23):e38286. doi: 10.1097/MD.0000000000038286

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Study search algorithm.

Download (269KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».