The possibility of predicting the COVID-19 severity by clinical-laboratory criteria taking into account the SARS-CoV-2 strain: An analytical review
- 作者: Poluektova V.B.1, Sankova M.V.1, Volchkova E.V.1, Larina S.N.1, Maloletneva N.V.1, Shabalina O.Y.1, Lisova P.A.1, Rochlina D.A.1, Darvina O.V.1
-
隶属关系:
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- 期: 卷 29, 编号 3 (2024)
- 页面: 192-203
- 栏目: REVIEW ARTICLES
- URL: https://ogarev-online.ru/1560-9529/article/view/265936
- DOI: https://doi.org/10.17816/EID629244
- ID: 265936
如何引用文章
详细
The survival of patients with severe COVID-19 depends on timely and adequate assessment of the risk of adverse disease outcomes. Currently, conflicting data on the prognostic value of various laboratory parameters in severe COVID-19 caused by different SARS-CoV-2 variants require analysis and systematization. The leading clinical and laboratory signs that determine the severity of COVID-19 include the syndrome of systemic inflammatory reaction and hemostasis disorders, which, in conditions of high viral load, hypoxia, and toxic exposure, contribute to the development of cytolytic syndrome, cytopenia, and multiple organ failure. Biological and immunological features of SARS-CoV-2 variants have an important influence on the severity of the infection. Based on literature sources, we have listed the most significant laboratory parameters, which, combined with clinical criteria, serve as an accurate guide for physicians both in monitoring patients and selecting therapy in Russia and abroad. Some SARS-CoV-2 variants exhibit reduced susceptibility to monoclonal antibodies and recombination plasma, which requires a revision of the therapy strategy. Detailed analysis of pathognomonic laboratory parameters and understanding of the immunological response to a particular SARS-CoV-2 variant will quickly and accurately identify the vulnerable patient groups, timely change in their therapy, and prevent complication development.
作者简介
Victoria Poluektova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: viktoriya211@mail.ru
ORCID iD: 0000-0002-5053-0312
SPIN 代码: 7290-8377
MD, Cand. Sci. (Medicine), Assistant Professor
俄罗斯联邦, MoscowMaria Sankova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: cankov@yandex.ru
ORCID iD: 0000-0003-3164-9737
SPIN 代码: 2212-5646
俄罗斯联邦, Moscow
Elena Volchkova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: antononina@rambler.ru
ORCID iD: 0000-0003-4581-4510
SPIN 代码: 3342-4681
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowSvetlana Larina
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: snlarina07@yandex.ru
ORCID iD: 0000-0003-0188-543X
SPIN 代码: 2906-0605
Cand. Sci. (Biology), Assistant Professor
俄罗斯联邦, MoscowNatalia Maloletneva
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: natalya-maloletneva@yandex.ru
ORCID iD: 0000-0003-0430-731X
SPIN 代码: 8267-9750
MD, Cand. Sci. (Medicine), Assistant Professor
俄罗斯联邦, MoscowOlga Shabalina
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: shoy3020@mail.ru
ORCID iD: 0000-0003-0506-0961
SPIN 代码: 5773-4882
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowPolina Lisova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
编辑信件的主要联系方式.
Email: paolino31@yandex.ru
ORCID iD: 0000-0002-2009-8354
MD
俄罗斯联邦, MoscowDaria Rochlina
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: dasharohlina@mail.ru
ORCID iD: 0000-0002-7677-2969
MD
MoscowOlga Darvina
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: oldarmir@mail.ru
ORCID iD: 0000-0001-8496-3987
SPIN 代码: 1561-9961
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Moscow参考
- Temporary methodological recommendations: prevention, diagnosis and treatment of new coronary infection (COVID-19). Version 17 (14.12.2022). Available from: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/061/252/original/ВМР_COVID-19_V17.pdf (In Russ.)
- Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020;91(1):157–160. doi: 10.23750/abm.v91i1.9397
- Saberiyan M, Karimi E, Khademi Z, et al. SARS-CoV-2: phenotype, genotype, and characterization of different variants. Cell Mol Biol Lett. 2022;27(1):50. doi: 10.1186/s11658-022-00352-6
- Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. doi: 10.1016/S2213-2600(20)30079-5
- Guan WJ, Ni ZY, Hu Y, et al.; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032
- Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–2629. doi: 10.1172/JCI137244
- Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe COVID-19: A meta-analysis. J Med Virol. 2020;92(11):2283–2285. doi: 10.1002/jmv.25948
- Khizroeva JH, Makatsariya AD, Bitsadze VO, et al. Laboratory monitoring of COVID-19 patients and importance of coagulopathy markers. Obstetrics, Gynecology and Reproduction. 2020;14(2): 132–147. (In Russ.) doi: 10.17749/2313-7347.141
- Liu F, Li L, Xu M, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020;127:104370. doi: 10.1016/j.jcv.2020.104370
- Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110–118. doi: 10.1016/j.jaci.2020.04.006
- McElvaney OJ, McEvoy NL, McElvaney OF, et al. Characterization of the Inflammatory Response to Severe COVID-19 Illness. Am J Respir Crit Care Med. 2020;202(6):812–821. doi: 10.1164/rccm.202005-1583OC
- Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020;58(7):1131–1134. doi: 10.1515/cclm-2020-0198
- Sack GH Jr. Serum amyloid A — a review. Mol Med. 2018;24(1):46. doi: 10.1186/s10020-018-0047-0
- Cheng L, Li H, Li L, et al. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Lab Anal. 2020;34(10):e23618. doi: 10.1002/jcla.23618
- Taneri PE, Gómez-Ochoa SA, Llanaj E, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol. 2020;35(8):763–773. doi: 10.1007/s10654-020-00678-5
- Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5(1):33. doi: 10.1038/s41392-020-0148-4
- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3
- Lutckii AA, Zhirkov AA, Lobzin DYu, et al. Interferon-γ: biological function and application for study of cellular immune response. Journal Infectology. 2015;7(4):10–22. (In Russ.) doi: 10.22625/2072-6732-2015-7-4-10-22
- Klypa TV, Bychinin MV, Mandel IA, et al. Clinical characteristics of patients admitted to an ICU with COVID-19. Predictors of the severe disease. Journal of Clinical Practice. 2020;11(2):6–20. (In Russ.) doi: 10.17816/clinpract34182
- Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J Med Virol. 2020;92(10):1733–1734. doi: 10.1002/jmv.25819
- Pereira MAM, Barros ICA, Jacob ALV, et al. Laboratory findings in SARS-CoV-2 infections: State of the art. Rev Assoc Med Bras (1992). 2020;66(8):1152–1156. doi: 10.1590/1806-9282.66.8.1152
- Qu R, Ling Y, Zhang YHZ, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol. 2020;92(9):1533–1541. doi: 10.1002/jmv.25767
- Spiezia L, Boscolo A, Poletto F, et al. COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thromb Haemost. 2020;120(6):998–1000. doi: 10.1055/s-0040-1710018
- Makatsariya AD, Slukhanchuk EV, Bitsadze VO, et al. COVID-19, hemostasis disorders and risk of thrombotic complications. Annals of the Russian Academy of Medical sciences. 2020;75(4):306–317. (In Russ.) doi: 10.15690/vramn1368
- Ji HL, Zhao R, Matalon S, Matthay MA. Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiol Rev. 2020;100(3):1065–1075. doi: 10.1152/physrev.00013.2020
- Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747–1751. doi: 10.1111/jth.14854
- Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023–1026. doi: 10.1111/jth.14810
- Aksenova A.Y. Von Willebrand factor and endothelial damage: a possible association with COVID-19. Ecological genetics. 2020;18(2):135–138. (In Russ.) doi: 10.17816/ecogen33973
- Yang Z, Shi J, He Z, et al. Predictors for imaging progression on chest CT from coronavirus disease 2019 (COVID-19) patients. Aging (Albany NY). 2020;12(7):6037–6048. doi: 10.18632/aging.102999
- Misra A, Ghosh A, Gupta R. Heterogeneity in presentation of hyperglycaemia during COVID-19 pandemic: A proposed classification. Diabetes Metab Syndr. 2021;15(1):403–406. doi: 10.1016/j.dsx.2021.01.018
- Klypa TV, Orehova MS, Zabrosaeva LI. Hyperglycaemia in criticaly ill patients. Diabetes mellitus. 2015;18(1):33–41. (In Russ.) doi: 10.14341/DM2015133-41
- Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7):995–998. doi: 10.1021/acschemneuro.0c00122
- Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18–22. doi: 10.1016/j.bbi.2020.03.031
- Mohammad S, Mishra A, Ashraf MZ. Emerging Role of Vitamin D and its Associated Molecules in Pathways Related to Pathogenesis of Thrombosis. Biomolecules. 2019;9(11):649. doi: 10.3390/biom9110649
- Gubenko NS, Budko AA, Plisyuk AG, Orlova IA. Association of general blood count indicators with the severity of COVID-19 in hospitalized patients. South Russian Journal of Therapeutic Practice. 2021;2(1):90–101. (In Russ.) doi: 10.21886/2712-8156-2021-2-1-90-101
- Simon J, Grodecki K, Cadet S, et al. Radiomorphological signs and clinical severity of SARS-CoV-2 lineage B.1.1.7. BJR Open. 2022;4(1):20220016. doi: 10.1259/bjro.20220016
- Akkız H. The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern. Front Med (Lausanne). 2022;9:849217. doi: 10.3389/fmed.2022.849217
- Gupta RK. Will SARS-CoV-2 variants of concern affect the promise of vaccines? Nat Rev Immunol. 2021;21(6):340–341. doi: 10.1038/s41577-021-00556-5
- Hirabara SM, Serdan TDA, Gorjao R, et al. SARS-COV-2 Variants: Differences and Potential of Immune Evasion. Front Cell Infect Microbiol. 2022;11:781429. doi: 10.3389/fcimb.2021.781429
- Van Goethem N, Vandromme M, Van Oyen H, et al. Severity of infection with the SARS-CoV-2 B.1.1.7 lineage among hospitalized COVID-19 patients in Belgium. PLoS One. 2022;17(6):e0269138. doi: 10.1371/journal.pone.0269138
- Giles B, Meredith P, Robson S, et al. The SARS-CoV-2 B.1.1.7 variant and increased clinical severity-the jury is out. Lancet Infect Dis. 2021;21(9):1213–1214. doi: 10.1016/S1473-3099(21)00356-X
- Spinicci M, Graziani L, Tilli M, et al. Infection with SARS-CoV-2 Variants Is Associated with Different Long COVID Phenotypes. Viruses. 2022;14(11):2367. doi: 10.3390/v14112367
- Funk T, Pharris A, Spiteri G, et al. Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Euro Surveill. 2021;26(16):2100348. doi: 10.2807/1560-7917.ES.2021.26.16.2100348
- Conti P, Caraffa A, Gallenga CE, et al. The British variant of the new coronavirus-19 (Sars-Cov-2) should not create a vaccine problem. J Biol Regul Homeost Agents. 2021;35(1):1–4. doi: 10.23812/21-3-E
- Wibmer CK, Ayres F, Hermanus T, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med. 2021;27(4):622–625. doi: 10.1038/s41591-021-01285-x
- Khan A, Khan T, Ali S, et al. SARS-CoV-2 new variants: Characteristic features and impact on the efficacy of different vaccines. Biomed Pharmacother. 2021;143:112176. doi: 10.1016/j.biopha.2021.112176
- Duong D. Alpha, Beta, Delta, Gamma: what’s important to know about SARS-CoV-2 variants of concern? CMAJ. 2021;193(27): E1059–E1060. doi: 10.1503/cmaj.1095949
- Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593(7857):130–135. doi: 10.1038/s41586-021-03398-2
- Ong SWX, Chiew CJ, Ang LW, et al. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin Infect Dis. 2022;75(1):e1128–e1136. doi: 10.1093/cid/ciab721
- Esper FP, Adhikari TM, Tu ZJ, et al. Alpha to Omicron: Disease Severity and Clinical Outcomes of Major SARS-CoV-2 Variants. J Infect Dis. 2023;227(3):344–352. doi: 10.1093/infdis/jiac411
- Gökharman FD, Ertem GT, Aydın S, et al. Evaluation of thorax computed tomographic findings in COVID-19 variant cases. Respir Investig. 2022;60(3):364–368. doi: 10.1016/j.resinv.2021.11.013
- Wang P, Casner RG, Nair MS, et al. Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization. Cell Host Microbe. 2021;29(5):747–751.e4. doi: 10.1016/j.chom.2021.04.007
- Adam D. The rush to study fast-spreading coronavirus variants. Nature. 2021;594(7861):19–20. doi: 10.1038/d41586-021-01390-4
- Viceconte G, Ponsiglione A, Buonomo AR, et al. COVID-19 chest CT and laboratory features of B.1.617.2 (Delta variant) vs B.1.1.7 (Alpha variant) surge: a single center case-control study. Infez Med. 2022;30(4):555–562. doi: 10.53854/liim-3004-10
- Koc I. Clinical and Laboratory Differences between Delta and UK Variants of SARS-CoV-2: B.1.617.2 and B.1.1.7. Tohoku J Exp Med. 2022;257(4):273–281. doi: 10.1620/tjem.2022.J041
- Liu J, Liu Y, Xia H, et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature. 2021;596(7871): 273–275. doi: 10.1038/s41586-021-03693-y
- Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596(7871):276–280. doi: 10.1038/s41586-021-03777-9
- Tong C, Shi W, Zhang A, Shi Z. Tracking and controlling the spatiotemporal spread of SARS-CoV-2 Omicron variant in South Africa. Travel Med Infect Dis. 2022;46:102252. doi: 10.1016/j.tmaid.2021.102252
- Chen J, Wang R, Gilby NB, Wei GW. Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance. J Chem Inf Model. 2022;62(2):412–422. doi: 10.1021/acs.jcim.1c01451
- Jang YR, Kim JM, Rhee JE, et al. Clinical Features and Duration of Viral Shedding in Individuals With SARS-CoV-2 Omicron Variant Infection. Open Forum Infect Dis. 2022;9(7):ofac237. doi: 10.1093/ofid/ofac237
- Rodriguez-Sevilla JJ, Güerri-Fernádez R, Bertran Recasens B. Is There Less Alteration of Smell Sensation in Patients with Omicron SARS-CoV-2 Variant Infection? Front Med. 2022;9:852998. doi: 10.3389/fmed.2022.852998
- Cao Y, Wang J, Jian F, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2022; 602(7898):657–663. doi: 10.1038/s41586-021-04385-3
补充文件
