Conservation of cholera vibrios in complex microcosm containing green microalgae

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: In the summer-autumn period, the peak of phytoplankton reproduction and flowering occurs and results in the deterioration of the quality of river water is noted. At the same time, cases of gastrointestinal diseases in humans are recorded, and epidemic complications of cholera may occur in endemic areas. V. cholerae form biofilm on the surface of chitinous hydrobionts and plastic components can lead to the spread of V. cholerae, possibly explaining the autochthonous mechanism of their existence in water bodies.

AIM: This study determines the duration of Vibrio cholerae preservation on biotic (chitin) and abiotic (plastic) substrates in the presence of green unicellular algae with a change in cultivation temperature under experimental conditions.

MATERIALS AND METHODS: This study used bacteriological and molecular genetic methods to achieve its goal.

RESULTS: The preservation of toxigenic and non-toxigenic strains of V. cholerae O1 El Tor and V. cholerae O139 (ctxАВ+tcpА+csh1 and ctxАtcpАcsh1+) for six months, including three months at a low temperature simulating the autumn-winter period, as part of biofilms in microcosms, where one component is green microalgae. We noted an excess of the concentration of V. cholerae O1 and O139 serogroups by two orders of magnitude in samples where one of the components is chitin and the reproduction of green microalgae in the presence of a chitin substrate. This is probably one stage in the food chain in the ecology of water bodies and, accordingly, can be a reservoir for biofilm forms of cholera vibrios. Preservation of V. cholerae O1 El Tor non-toxigenic strain in a viable state in biofilm samples on plastic at decreased temperatures 8±2°C for three months is possibly due to the presence of a cold shock gene in its genome.

CONCLUSION: Without a substrate for adhesion, colonization, and biofilm formation, vibrios are incapable of long-term persistence at low temperatures.

About the authors

Svetlana V. Titova

Rostov-on-Don of the Order of the Red Banner of Labor Research Anti-Plague Institute

Author for correspondence.
Email: titova_sv@antiplague.ru
ORCID iD: 0000-0002-7831-841X
SPIN-code: 5695-2103

MD, Cand. Sci. (Med.)

Russian Federation, Rostov-on-Don

Elena A. Menshikova

Rostov-on-Don of the Order of the Red Banner of Labor Research Anti-Plague Institute

Email: menshikova_ea@antiplague.ru
ORCID iD: 0000-0002-6003-4283
SPIN-code: 6367-4404

Cand. Sci. (Biol.)

Russian Federation, Rostov-on-Don

Sergei O. Vodopyanov

Rostov-on-Don of the Order of the Red Banner of Labor Research Anti-Plague Institute

Email: serge100v@gmail.com
ORCID iD: 0000-0003-4336-0439
SPIN-code: 4672-9310

MD, Dr. Sci. (Med.)

Russian Federation, Rostov-on-Don

Tamara N. Borodina

Rostov-on-Don of the Order of the Red Banner of Labor Research Anti-Plague Institute

Email: borodina_tn@antiplague.ru
ORCID iD: 0000-0001-6222-4331
Russian Federation, Rostov-on-Don

Artem A. Gerasimenko

Rostov-on-Don of the Order of the Red Banner of Labor Research Anti-Plague Institute

Email: gerasimenko_aa@antiplague.ru
ORCID iD: 0000-0002-7700-3483
Russian Federation, Rostov-on-Don

Igor P. Oleynikov

Rostov-on-Don of the Order of the Red Banner of Labor Research Anti-Plague Institute

Email: selyanskaya_na@antiplague.ru
ORCID iD: 0000-0002-2390-9773
Russian Federation, Rostov-on-Don

Nadezhda A. Selyanskaya

Rostov-on-Don of the Order of the Red Banner of Labor Research Anti-Plague Institute

Email: selyanskaya_na@antiplague.ru
ORCID iD: 0000-0002-0008-4705
Russian Federation, Rostov-on-Don

References

  1. Colwell RR, Huq A. Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Ann N Y Acad Sci. 1994;740:44–54. doi: 10.1111/j.1749-6632.1994.tb19852.x
  2. Lipp EK, Huq A, Colwell RR. Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev. 2002;15(4):757–770. doi: 10.1128/CMR.15.4.757-770.2002
  3. Lutz C, Erken M, Noorian P, et al. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae. Front Microbiol. 2013;4:375. doi: 10.3389/fmicb.2013.00375
  4. Skryabin AYu, Popovyan GV, Tron IA. Microalgae as a factor influencing the organoleptic properties of the water of the Don River. Water Supply and Sanitary Engineering. 2015;(8):38–43. (In Russ).
  5. Mokienko AV. Cyanobacteria as dangerous contaminants of surface water bodies. Water Magazine. 2017;(2):20–24. (In Russ).
  6. Codd GA, Lindsay J, Young FM, et al. Harmful Cyanobacteria. In: Huisman J, Matthijs HC, Visser PM, editors. Harmful Cyanobacteria. Aquatic Ecology Series, vol. 3. Springer, Dordrecht; 2005. doi: 10.1007/1-4020-3022-3_1
  7. Vezzulli L, Grande C, Reid PC, et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci U S A. 2016;113(34): E5062–5071. doi: 10.1073/pnas.1609157113
  8. Alam M, Sultana M, Nair GB, et al. Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc Natl Acad Sci U S A. 2007;104(45): 17801–17806. doi: 10.1073/pnas.0705599104
  9. Islam MS, Islam MS, Mahmud ZH, et al. Role of phytoplankton in maintaining endemicity and seasonality of cholera in Bangladesh. Trans R Soc Trop Med Hyg. 2015;109(9):572–578. doi: 10.1093/trstmh/trv057
  10. Kulikalova ES. Ekologicheskiye i mikrobiologicheskiye aspekty epidemiologicheskogo nadzora za kholeroy (po materialam Sibiri i Dal’nego Vostoka) [dissertation thesis]. Irkutsk; 2010. 23 p. (In Russ).
  11. Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47(13):7137–7146. doi: 10.1021/es401288x
  12. Patent RUS №2559546/ 10.08.2015. Titova SV, Kushnareva EV. Sposob modelirovaniya obrazovaniya bioplonok kholernykh vibrionov v usloviyakh eksperimenta i ustroystvo dlya yego osushchestvleniya. Available from: https://yandex.ru/patents/doc/RU2559546C1_20150810 (In Russ).
  13. Titova SV, Verkina LM. Modeling of Vibrio cholerae biofilms on solid surfaces (glass and plastic) and their visualization in light and luminescent microscopes. Clinical Laboratory Diagnostics. 2016;61(4):238–241. (In Russ).
  14. Patent RUS №2685878/ 30.01.2018. Vodopyanov SO, Vodopyanov AS, Menshikova EA, et al. Sposob modelirovaniya bioplonok, formiruyemykh Vibrio cholerae O1 serogruppy na poverkhnosti khitina. Available from: https://yandex.ru/patents/doc/RU2685878C1_20190423 (In Russ).
  15. Titova SV. Cultivation of Vibrio cholerae with green algae in the experiment. Journal of Microbiology, Epidemiology and Immunobiology. 2000;(2):19–22. (In Russ).
  16. Huang J, Zhu Y, Wen H, et al. Quadruplex real-time PCR assay for detection and identification of Vibrio cholerae O1 and O139 strains and determination of their toxigenic potential. Appl Environ Microbiol. 2009;75(22):6981–6985. doi: 10.1128/AEM.00517-09
  17. Lyon WJ. TaqMan PCR for detection of Vibrio cholerae O1, O139, non-O1, and non-O139 in pure cultures, raw oysters, and synthetic seawater. Appl Environ Microbiol. 2001;67(10):4685–4693. doi: 10.1128/AEM.67.10.4685-4693.2001
  18. Titova SV, Menshikova EA, Vodopyanov SO, et al. Study of the biofilm form of vibrio cholera by RT-PCR. Epidemiology and Infectious Diseases. 2022;27(1):23–32. (In Russ). doi: 10.17816/EID109894
  19. Fadeikina OV, Kasina IV, Ermolaeva TN, et al. Problems of assessing the total concentration of microbial cells using an industry standard sample for the turbidity of bacterial suspensions. International Journal of Applied and Fundamental Research. 2016;(11-2):268–273. (In Russ).
  20. Menshikova EA, Kurbatova EM, Vodopyanov SO, et al. Evaluation of the ability of cholera vibrios to form a biofilm on the surface of the chitinous shell of a crayfish by real-time PCR. Journal of Microbiology, Epidemiology and Immunobiology. 2021;98(4):434–439. (In Russ). doi: 10.36233/0372-9311-99
  21. Schneider DR, Parker CD. Purification and characterization of the mucinase of Vibrio cholerae. J Infect Dis. 1982;145(4):474–482. doi: 10.1093/infdis/145.4.474
  22. Constantin de Magny G, Murtugudde R, Sapiano MR, et al. Environmental signatures associated with cholera epidemics. Proc Natl Acad Sci U S A. 2008;105(46):17676–17681. doi: 10.1073/pnas.0809654105
  23. Vezzulli L, Pruzzo C, Huq A, Colwell RR. Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ Microbiol Rep. 2010;2(1):27–33. doi: 10.1111/j.1758-2229.2009.00128.x
  24. Markov EYu, Kulikalova ES, Urbanovich LYa, et al. Chitin and products of its hydrolysis in Vibrio cholerae ecology. Biochemistry Moscow. 2015;80(9):1109–1116. (In Russ). doi: 10.1134/S0006297915090023
  25. Duvanova OV, Mishankin BN, Sorokin VM, Titova SV. Evaluation of the effect of cultivation temperature on the activity of N-acetyl-β-D-glucosaminidase in V. cholerae. Public Health and Habitat — ZNiSO. 2016;(4):42–44. (In Russ).
  26. Borodina OV, Vodopyanov SO, Vodopyanov AS, et al. Study of the occurrence of the csh1 cold shock gene in Vibrio cholerae strains circulating in the Russian Federation. Bacteriology. 2021;6(3):22–23. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Concentration of V. cholerae O1/O39 serogroups with different genetic characteristics under different cultivation conditions. Note: Designations of color lines: green — V. cholerae+algae; orange — V. cholerae+algae+plastic/plankton; gray — V. cholerae+algae+ plastic/biofilm; yellow — V. cholerae+algae+chitin/plankton; blue — V. cholerae+algae+chitin/biofilm; black — V. cholerae control (without substrates).

Download (317KB)

Copyright (c) 2023 Titova S.V., Menshikova E.A., Vodopyanov S.O., Borodina T.N., Gerasimenko A.A., Oleynikov I.P., Selyanskaya N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».