Express method for determining the sensitivity of pathogens of bacterial complications in COVID-19 to bacteriophages

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: In recent years, there has been a catastrophic increase in the resistance of bacterial strains to antibacterial drugs. The spread of the novel coronavirus disease (COVID-19) pandemic has led to the overuse of antibiotics, which has led to an even greater spread of resistant strains in hospitals. Given the accumulated positive experience in using bacteriophages, it is advisable to use them in patients after determining the sensitivity of each strain of isolated bacteria to bacteriophages. Since Klebsiella pneumoniae was the most frequently isolated bacteria in complicated forms of COVID-19, it became necessary to determine the sensitivity of these and other gram-negative bacteria to the corresponding bacteriophages.

AIM: This study aims to reduce the time for determining the sensitivity of an isolated microorganism culture to bacteriophages by developing an express method.

MATERIALS AND METHODS: The study used 30 strains of pan-resistant Gram-negative microorganisms from the collection of the Museum of the Laboratory of Medical Bacteriology of the Pasteur Research Institute of Epidemiology and Microbiology in St. Petersburg: Klebsiella pneumoniae (n=10), Escherichia coli (n=10), Pseudomonas aeruginosa (n=10), and also preparations of bacteriophages manufactured by JSC “NPO Microgen:” Bacteriophage Klebsiella polyvalent purified; Bacteriophage coliproteus; Pseudomonas aeruginosa bacteriophage.

RESULTS: Of the strains studied, 4 out of 10 studied K. pneumoniae strains, 6 out of 10 E. coli strains, and 7 out of 10 P. aeruginosa strains were susceptible to polyvalent bacteriophage preparations. Reliable results were obtained 3 hours after the sensitivity of isolated cultures to bacteriophages was established, which is undoubtedly the most important finding of the study.

CONCLUSION: The developed method for determining the sensitivity of gram-negative bacteria to bacteriophages enables reducing the study time by 6 times (up to 3 hours), which affects the timing of etiotropic therapy selection with bacteriophages for each patient.

About the authors

Lyudmila A. Kraeva

Saint-Petersburg Pasteur Institute

Email: lykraeva@yandex.ru
ORCID iD: 0000-0002-9115-3250
SPIN-code: 4863-4001

MD, Dr. Sci. (Med.), Professor

Russian Federation, 14 Mira street, 197101 Saint Petersburg

Lidiya S. Konkova

Saint-Petersburg Pasteur Institute

Email: lidia.kireeva@yandex.ru
ORCID iD: 0009-0007-5400-3513
SPIN-code: 3527-7121

MD

Russian Federation, 14 Mira street, 197101 Saint Petersburg

Olga A. Burgasova

Peoples’ Friendship University of Russia

Email: olgaburgasova@mail.ru
ORCID iD: 0000-0002-5486-0837
SPIN-code: 5103-0451

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Sergey V. Dolinny

Peoples’ Friendship University of Russia; City Clinical Hospital V.P. Demikhov Department of Health of the city of Moscow

Author for correspondence.
Email: sdolinny.ru@yandex.ru
ORCID iD: 0000-0002-0690-2174
SPIN-code: 7832-4832

MD

Russian Federation, Moscow; Moscow

References

  1. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0
  2. Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51. doi: 10.1038/nrmicro3380
  3. Nikiforov VV, Suranova TG, Mironov AYu, et al. New coronavirus infection (COVID-19): Etiology, epidemiology, clinic, diagnosis, treatment and prevention. Study guide. Moscow; 2020. 48 p. (In Russ).
  4. Hill C, Mills S, Ross RP. Phages & antibiotic resistance: Are the most abundant entities on earth ready for a comeback? Future Microbiol. 2018;13:711–726. doi: 10.2217/fmb-2017-0261
  5. Brusina EB, Drozdova OM, Aleshkin AV. Problems of complex application of bacteriophages for prevention and treatment. Epidemiology and infectious diseases. 2018;(3):11–15. (In Russ). doi: 10.18565/epidem.2018.3.11-5
  6. Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: A potential solution for the antibiotic resistance crisis. J Infect Dev Ctries. 2014;8(2):129–136. doi: 10.3855/jidc.3573
  7. Patent RUS № 2785461 C1. Kraeva LA, Konkova LS. Express method for determining the sensitivity of gram-negative bacteria to bacteriophages. Available from: https://patenton.ru/patent/RU2785461C1. Accessed: 15.12.2022.
  8. Segall AM, Roach DR, Strathdee SA. Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. Curr Opin Microbiol. 2019;51:46–50. doi: 10.1016/j.mib.2019.03.005
  9. Chan BK, Turner PE, Kim S, et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health. 2018;2018(1):60–66. doi: 10.1093/emph/eoy005
  10. Castillo D, Rørbo N, Jørgensen J, et al. Phage defense mechanisms and their genomic and phenotypic implications in the fish pathogen Vibrio anguillarum. FEMS Microbiol Ecol. 2019;95(3). doi: 10.1093/femsec/fiz004
  11. Reyes-Robles T, Dillard RS, Cairns LS, et al. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J Bacteriol. 2018;200(15):e00792-17. doi: 10.1128/JB.00792-17
  12. Montso PK, Mlambo V, Ateba CN. Efficacy of novel phages for control of multi-drug resistant Escherichia coli O177 on artificially contaminated beef and their potential to disrupt biofilm formation. Food Microbiol. 2021;94:103647. doi: 10.1016/j.fm.2020.103647
  13. Harper DR. Criteria for selecting suitable infectious diseases for phage therapy. Viruses. 2018;10(4):177. doi: 10.3390/v10040177
  14. Kunz Coyne AJ, Stamper K, Kebriaei R, et al. Phage cocktails with daptomycin and ampicillin eradicates biofilm-embedded multidrug-resistant Enterococcus faecium with preserved phage susceptibility. Antibiotics (Basel). 2022;11(9):1175. doi: 10.3390/antibiotics11091175

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Tabl. 1

Download (1MB)

Copyright (c) 2023 Eco-vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».