Jumps of Energy Near a Homoclinic Set of a Slowly Time Dependent Hamiltonian System
- 作者: Bolotin S.V.1,2
- 
							隶属关系: 
							- Steklov Mathematical Institute
- University of Wisconsin-Madison
 
- 期: 卷 24, 编号 6 (2019)
- 页面: 682-703
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219410
- DOI: https://doi.org/10.1134/S1560354719060078
- ID: 219410
如何引用文章
详细
We consider a Hamiltonian system depending on a parameter which slowly changes with rate ε ≪ 1. If trajectories of the frozen autonomous system are periodic, then the system has adiabatic invariant which changes much slower than energy. For a system with 1 degree of freedom and a figure 8 separatrix, Anatoly Neishtadt [18] showed that for trajectories crossing the separatrix, the adiabatic invariant, and hence the energy, have quasirandom jumps of order ε. We prove a partial analog of Neishtadt’s result for a system with n degrees of freedom such that the frozen system has a hyperbolic equilibrium possessing several homoclinic orbits. We construct trajectories staying near the homoclinic set with energy having jumps of order ε at time intervals of order ∣ln ε∣, so the energy may grow with rate ε/∣ln ε∣. Away from the homoclinic set faster energy growth is possible: if the frozen system has chaotic behavior, Gelfreich and Turaev [16] constructed trajectories with energy growth rate of order ε.
作者简介
Sergey Bolotin
Steklov Mathematical Institute; University of Wisconsin-Madison
							编辑信件的主要联系方式.
							Email: bolotin@mi.ras.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Gubkina 8, Moscow, 119991; 480 Lincoln Dr., Madison, WI, 53706-1325						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					