Jumps of Energy Near a Homoclinic Set of a Slowly Time Dependent Hamiltonian System


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider a Hamiltonian system depending on a parameter which slowly changes with rate ε ≪ 1. If trajectories of the frozen autonomous system are periodic, then the system has adiabatic invariant which changes much slower than energy. For a system with 1 degree of freedom and a figure 8 separatrix, Anatoly Neishtadt [18] showed that for trajectories crossing the separatrix, the adiabatic invariant, and hence the energy, have quasirandom jumps of order ε. We prove a partial analog of Neishtadt’s result for a system with n degrees of freedom such that the frozen system has a hyperbolic equilibrium possessing several homoclinic orbits. We construct trajectories staying near the homoclinic set with energy having jumps of order ε at time intervals of order ∣ln ε∣, so the energy may grow with rate ε/∣ln ε∣. Away from the homoclinic set faster energy growth is possible: if the frozen system has chaotic behavior, Gelfreich and Turaev [16] constructed trajectories with energy growth rate of order ε.

Sobre autores

Sergey Bolotin

Steklov Mathematical Institute; University of Wisconsin-Madison

Autor responsável pela correspondência
Email: bolotin@mi.ras.ru
Rússia, ul. Gubkina 8, Moscow, 119991; 480 Lincoln Dr., Madison, WI, 53706-1325

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019