The Kepler Problem: Polynomial Algebra of Nonpolynomial First Integrals
- 作者: Tsiganov A.V.1
- 
							隶属关系: 
							- St. Petersburg State University
 
- 期: 卷 24, 编号 4 (2019)
- 页面: 353-369
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219340
- DOI: https://doi.org/10.1134/S1560354719040014
- ID: 219340
如何引用文章
详细
The sum of elliptic integrals simultaneously determines orbits in the Kepler problem and the addition of divisors on elliptic curves. Periodic motion of a body in physical space is defined by symmetries, whereas periodic motion of divisors is defined by a fixed point on the curve. The algebra of the first integrals associated with symmetries is a well-known mathematical object, whereas the algebra of the first integrals associated with the coordinates of fixed points is unknown. In this paper, we discuss polynomial algebras of nonpolynomial first integrals of superintegrable systems associated with elliptic curves.
作者简介
Andrey Tsiganov
St. Petersburg State University
							编辑信件的主要联系方式.
							Email: andrey.tsiganov@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Universitetskaya nab. 7/9, St. Petersburg, 199034						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					