The Kepler Problem: Polynomial Algebra of Nonpolynomial First Integrals
- Autores: Tsiganov A.V.1
- 
							Afiliações: 
							- St. Petersburg State University
 
- Edição: Volume 24, Nº 4 (2019)
- Páginas: 353-369
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219340
- DOI: https://doi.org/10.1134/S1560354719040014
- ID: 219340
Citar
Resumo
The sum of elliptic integrals simultaneously determines orbits in the Kepler problem and the addition of divisors on elliptic curves. Periodic motion of a body in physical space is defined by symmetries, whereas periodic motion of divisors is defined by a fixed point on the curve. The algebra of the first integrals associated with symmetries is a well-known mathematical object, whereas the algebra of the first integrals associated with the coordinates of fixed points is unknown. In this paper, we discuss polynomial algebras of nonpolynomial first integrals of superintegrable systems associated with elliptic curves.
Palavras-chave
Sobre autores
Andrey Tsiganov
St. Petersburg State University
							Autor responsável pela correspondência
							Email: andrey.tsiganov@gmail.com
				                					                																			                												                	Rússia, 							Universitetskaya nab. 7/9, St. Petersburg, 199034						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					