Quasi-periodic Orbits in Siegel Disks/Balls and the Babylonian Problem
- 作者: Saiki Y.1,2,3, Yorke J.A.3
- 
							隶属关系: 
							- Graduate School of Business Administration
- JST PRESTO
- University of Maryland
 
- 期: 卷 23, 编号 6 (2018)
- 页面: 735-750
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219124
- DOI: https://doi.org/10.1134/S1560354718060084
- ID: 219124
如何引用文章
详细
We investigate numerically complex dynamical systems where a fixed point is surrounded by a disk or ball of quasi-periodic orbits, where there is a change of variables (or conjugacy) that converts the system into a linear map. We compute this “linearization” (or conjugacy) from knowledge of a single quasi-periodic trajectory. In our computations of rotation rates of the almost periodic orbits and Fourier coefficients of the conjugacy, we only use knowledge of a trajectory, and we do not assume knowledge of the explicit form of a dynamical system. This problem is called the Babylonian problem: determining the characteristics of a quasi-periodic set from a trajectory. Our computation of rotation rates and Fourier coefficients depends on the very high speed of our computational method “the weighted Birkhoff average”.
作者简介
Yoshitaka Saiki
Graduate School of Business Administration; JST PRESTO; University of Maryland
							编辑信件的主要联系方式.
							Email: yoshi.saiki@r.hit-u.ac.jp
				                					                																			                												                	日本, 							2–1 Naka, Kunitachi, Tokyo, 186 8601; 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332 0012; College Park, MD, 20742						
James Yorke
University of Maryland
														Email: yoshi.saiki@r.hit-u.ac.jp
				                					                																			                												                	美国, 							College Park, MD, 20742						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					