Quasi-periodic Orbits in Siegel Disks/Balls and the Babylonian Problem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We investigate numerically complex dynamical systems where a fixed point is surrounded by a disk or ball of quasi-periodic orbits, where there is a change of variables (or conjugacy) that converts the system into a linear map. We compute this “linearization” (or conjugacy) from knowledge of a single quasi-periodic trajectory. In our computations of rotation rates of the almost periodic orbits and Fourier coefficients of the conjugacy, we only use knowledge of a trajectory, and we do not assume knowledge of the explicit form of a dynamical system. This problem is called the Babylonian problem: determining the characteristics of a quasi-periodic set from a trajectory. Our computation of rotation rates and Fourier coefficients depends on the very high speed of our computational method “the weighted Birkhoff average”.

Авторлар туралы

Yoshitaka Saiki

Graduate School of Business Administration; JST PRESTO; University of Maryland

Хат алмасуға жауапты Автор.
Email: yoshi.saiki@r.hit-u.ac.jp
Жапония, 2–1 Naka, Kunitachi, Tokyo, 186 8601; 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332 0012; College Park, MD, 20742

James Yorke

University of Maryland

Email: yoshi.saiki@r.hit-u.ac.jp
АҚШ, College Park, MD, 20742

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018