The Application of Lagrangian Descriptors to 3D Vector Fields
- Авторы: García-Garrido V.J.1,2, Curbelo J.2,3, Mancho A.M.2, Wiggins S.4, Mechoso C.R.5
- 
							Учреждения: 
							- Departamento de Física y Matemáticas
- Instituto de Ciencias Matemáticas
- Departamento de Matemáticas
- School of Mathematics
- Department of Atmospheric and Oceanic Sciences
 
- Выпуск: Том 23, № 5 (2018)
- Страницы: 551-568
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219049
- DOI: https://doi.org/10.1134/S1560354718050052
- ID: 219049
Цитировать
Аннотация
Since the 1980s, the application of concepts and ideas from dynamical systems theory to analyze phase space structures has provided a fundamental framework to understand long-term evolution of trajectories in many physical systems. In this context, for the study of fluid transport and mixing the development of Lagrangian techniques that can capture the complex and rich dynamics of time-dependent flows has been crucial. Many of these applications have been to atmospheric and oceanic flows in two-dimensional (2D) relevant scenarios. However, the geometrical structures that constitute the phase space structures in time-dependent three-dimensional (3D) flows require further exploration. In this paper we explore the capability of Lagrangian descriptors (LDs), a tool that has been successfully applied to time-dependent 2D vector fields, to reveal phase space geometrical structures in 3D vector fields. In particular, we show how LDs can be used to reveal phase space structures that govern and mediate phase space transport. We especially highlight the identification of normally hyperbolic invariant manifolds (NHIMs) and tori. We do this by applying this methodology to three specific dynamical systems: a 3D extension of the classical linear saddle system, a 3D extension of the classical Duffing system, and a geophysical fluid dynamics f-plane approximation model which is described by analytical wave solutions of the 3D Euler equations. We show that LDs successfully identify and recover the template of invariant manifolds that define the dynamics in phase space for these examples.
Об авторах
Víctor García-Garrido
Departamento de Física y Matemáticas; Instituto de Ciencias Matemáticas
							Автор, ответственный за переписку.
							Email: vjose.garcia@uah.es
				                					                																			                												                	Испания, 							Alcalá de Henares, 28871; Madrid, 28049						
Jezabel Curbelo
Instituto de Ciencias Matemáticas; Departamento de Matemáticas
														Email: vjose.garcia@uah.es
				                					                																			                												                	Испания, 							Madrid, 28049; Madrid, 28049						
Ana Mancho
Instituto de Ciencias Matemáticas
														Email: vjose.garcia@uah.es
				                					                																			                												                	Испания, 							Madrid, 28049						
Stephen Wiggins
School of Mathematics
														Email: vjose.garcia@uah.es
				                					                																			                												                	Великобритания, 							Bristol, BS8 1TW						
Carlos Mechoso
Department of Atmospheric and Oceanic Sciences
														Email: vjose.garcia@uah.es
				                					                																			                												                	США, 							Los Angeles, CA						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					