On a Convex Embedding of the Euler Problem of Two Fixed Centers


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this article, we study a convex embedding for the Euler problem of two fixed centers for energies below the critical energy level. We prove that the doubly-covered elliptic coordinates provide a 2-to-1 symplectic embedding such that the image of the bounded component near the lighter primary of the regularized Euler problem is convex for any energy below the critical Jacobi energy. This holds true if the two primaries have equal mass, but does not hold near the heavier body.

作者简介

Seongchan Kim

Mathematisches Institut

编辑信件的主要联系方式.
Email: seongchan.kim@math.uni-augsburg.de
德国, Universitätsstrasse 14, Augsburg, 86159

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018