On a Convex Embedding of the Euler Problem of Two Fixed Centers


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this article, we study a convex embedding for the Euler problem of two fixed centers for energies below the critical energy level. We prove that the doubly-covered elliptic coordinates provide a 2-to-1 symplectic embedding such that the image of the bounded component near the lighter primary of the regularized Euler problem is convex for any energy below the critical Jacobi energy. This holds true if the two primaries have equal mass, but does not hold near the heavier body.

Sobre autores

Seongchan Kim

Mathematisches Institut

Autor responsável pela correspondência
Email: seongchan.kim@math.uni-augsburg.de
Alemanha, Universitätsstrasse 14, Augsburg, 86159

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018