Nonisometric Domains with the Same Marvizi – Melrose Invariants


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For any strictly convex planar domain Ω ⊂ R2 with a C boundary one can associate an infinite sequence of spectral invariants introduced by Marvizi–Merlose [5]. These invariants can generically be determined using the spectrum of the Dirichlet problem of the Laplace operator. A natural question asks if this collection is sufficient to determine Ω up to isometry. In this paper we give a counterexample, namely, we present two nonisometric domains Ω and \(\bar \Omega \) with the same collection of Marvizi–Melrose invariants. Moreover, each domain has countably many periodic orbits {Sn}n≥1 (resp. \({\left\{ {{{\bar S}^n}} \right\}_{n \geqslant 1}}\)) of period going to infinity such that Sn and \({\bar S^n}\) have the same period and perimeter for each n.

作者简介

Lev Buhovsky

School of Mathematical Sciences

编辑信件的主要联系方式.
Email: levbuh@gmail.com
以色列, Ramat Aviv, Tel Aviv, 69978

Vadim Kaloshin

Department of Mathematics

Email: levbuh@gmail.com
美国, College Park, MD, 20740

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018