Nonisometric Domains with the Same Marvizi – Melrose Invariants
- Авторы: Buhovsky L.1, Kaloshin V.2
- 
							Учреждения: 
							- School of Mathematical Sciences
- Department of Mathematics
 
- Выпуск: Том 23, № 1 (2018)
- Страницы: 54-59
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218909
- DOI: https://doi.org/10.1134/S1560354718010057
- ID: 218909
Цитировать
Аннотация
For any strictly convex planar domain Ω ⊂ R2 with a C∞ boundary one can associate an infinite sequence of spectral invariants introduced by Marvizi–Merlose [5]. These invariants can generically be determined using the spectrum of the Dirichlet problem of the Laplace operator. A natural question asks if this collection is sufficient to determine Ω up to isometry. In this paper we give a counterexample, namely, we present two nonisometric domains Ω and \(\bar \Omega \) with the same collection of Marvizi–Melrose invariants. Moreover, each domain has countably many periodic orbits {Sn}n≥1 (resp. \({\left\{ {{{\bar S}^n}} \right\}_{n \geqslant 1}}\)) of period going to infinity such that Sn and \({\bar S^n}\) have the same period and perimeter for each n.
Об авторах
Lev Buhovsky
School of Mathematical Sciences
							Автор, ответственный за переписку.
							Email: levbuh@gmail.com
				                					                																			                												                	Израиль, 							Ramat Aviv, Tel Aviv, 69978						
Vadim Kaloshin
Department of Mathematics
														Email: levbuh@gmail.com
				                					                																			                												                	США, 							College Park, MD, 20740						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					