On integrability of certain rank 2 sub-Riemannian structures


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We discuss rank 2 sub-Riemannian structures on low-dimensional manifolds and prove that some of these structures in dimensions 6, 7 and 8 have a maximal amount of symmetry but no integrals polynomial in momenta of low degrees, except for those coming from the Killing vector fields and the Hamiltonian, thus indicating nonintegrability of the corresponding geodesic flows.

作者简介

Boris Kruglikov

Institute of Mathematics and Statistics

编辑信件的主要联系方式.
Email: boris.kruglikov@uit.no
挪威, Tromsø, 90-37

Andreas Vollmer

Mathematisches Institut; INdAM - Politecnico di Torino, Dipartimento di Scienze Matematiche

Email: boris.kruglikov@uit.no
德国, Jena, 07737; Corso Duca degli Abruzzi 24, Torino, 10129

Georgios Lukes-Gerakopoulos

Institute of Theoretical Physics, Faculty of Mathematics and Physics; Astronomical Institute of the Academy of Sciences of the Czech Republic

Email: boris.kruglikov@uit.no
捷克共和国, Prague, 121 16; Boční II 1401/1a, Prague, CZ-141 31

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017