A coin vibrational motor swimming at low Reynolds number
- Autores: Quillen A.C.1, Askari H.2, Kelley D.H.2, Friedmann T.1,3,4, Oakes P.W.1
- 
							Afiliações: 
							- Dept. of Physics and Astronomy
- Dept. of Mechanical Engineering
- Dept. of Mathematics
- Dept. of Mathematics and Statistics
 
- Edição: Volume 21, Nº 7-8 (2016)
- Páginas: 902-917
- Seção: Nonlinear Dynamics & Mobile Robotics
- URL: https://ogarev-online.ru/1560-3547/article/view/218507
- DOI: https://doi.org/10.1134/S1560354716070121
- ID: 218507
Citar
Resumo
Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its oscillatory motions induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the oscillations of the motor it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming velocity Vstream ~ Res1/2U0 where U0 is the velocity of surface oscillations, and streaming Reynolds number Res = U02/(ων) for motor angular frequency ω and fluid kinematic viscosity ν.
Sobre autores
Alice Quillen
Dept. of Physics and Astronomy
							Autor responsável pela correspondência
							Email: alice.quillen@rochester.edu
				                					                																			                												                	Estados Unidos da América, 							Rochester, NY, 14627						
Hesam Askari
Dept. of Mechanical Engineering
														Email: alice.quillen@rochester.edu
				                					                																			                												                	Estados Unidos da América, 							Rochester, NY, 14627						
Douglas Kelley
Dept. of Mechanical Engineering
														Email: alice.quillen@rochester.edu
				                					                																			                												                	Estados Unidos da América, 							Rochester, NY, 14627						
Tamar Friedmann
Dept. of Physics and Astronomy; Dept. of Mathematics; Dept. of Mathematics and Statistics
														Email: alice.quillen@rochester.edu
				                					                																			                												                	Estados Unidos da América, 							Rochester, NY, 14627; Rochester, NY, 14627; Northampton, MA, 01063						
Patrick Oakes
Dept. of Physics and Astronomy
														Email: alice.quillen@rochester.edu
				                					                																			                												                	Estados Unidos da América, 							Rochester, NY, 14627						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					