Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 22, № 5 (2017)

Article

Vortex merger near a topographic slope in a homogeneous rotating fluid

Carton X., Morvan M., Reinaud J., Sokolovskiy M., L’Hegaret P., Vic C.

Аннотация

The effect of a bottom slope on the merger of two identical Rankine vortices is investigated in a two-dimensional, quasi-geostrophic, incompressible fluid.

When two cyclones initially lie parallel to the slope, and more than two vortex diameters away from the slope, the critical merger distance is unchanged. When the cyclones are closer to the slope, they can merge at larger distances, but they lose more mass into filaments, thus weakening the efficiency of merger. Several effects account for this: the topographic Rossby wave advects the cyclones, reduces their mutual distance and deforms them. This alongshelf wave breaks into filaments and into secondary vortices which shear out the initial cyclones. The global motion of fluid towards the shallow domain and the erosion of the two cyclones are confirmed by the evolution of particles seeded both in the cyclones and near the topographic slope. The addition of tracer to the flow indicates that diffusion is ballistic at early times.

For two anticyclones, merger is also facilitated because one vortex is ejected offshore towards the other, via coupling with a topographic cyclone. Again two anticyclones can merge at large distance but they are eroded in the process.

Finally, for taller topographies, the critical merger distance is again increased and the topographic influence can scatter or completely erode one of the two initial cyclones.

Conclusions are drawn on possible improvements of the model configuration for an application to the ocean.

Regular and Chaotic Dynamics. 2017;22(5):455-478
pages 455-478 views

Connecting orbits near the adiabatic limit of Lagrangian systems with turning points

Ivanov A.

Аннотация

We consider a natural Lagrangian system defined on a complete Riemannian manifold being subjected to action of a time-periodic force field with potential U(q, t, ε) = f(εt)V(q) depending slowly on time. It is assumed that the factor f(τ) is periodic and vanishes at least at one point on the period. Let Xc denote a set of isolated critical points of V(x) at which V(x) distinguishes its maximum or minimum. In the adiabatic limit ε → 0 we prove the existence of a set Eh such that the system possesses a rich class of doubly asymptotic trajectories connecting points of Xc for εEh.

Regular and Chaotic Dynamics. 2017;22(5):479-501
pages 479-501 views

On integrability of certain rank 2 sub-Riemannian structures

Kruglikov B., Vollmer A., Lukes-Gerakopoulos G.

Аннотация

We discuss rank 2 sub-Riemannian structures on low-dimensional manifolds and prove that some of these structures in dimensions 6, 7 and 8 have a maximal amount of symmetry but no integrals polynomial in momenta of low degrees, except for those coming from the Killing vector fields and the Hamiltonian, thus indicating nonintegrability of the corresponding geodesic flows.

Regular and Chaotic Dynamics. 2017;22(5):502-519
pages 502-519 views

Orbits in the problem of two fixed centers on the sphere

Gonzalez Leon M., Guilarte J., de la Torre Mayado M.

Аннотация

A trajectory isomorphism between the two Newtonian fixed center problem in the sphere and two associated planar two fixed center problems is constructed by performing two simultaneous gnomonic projections in S2. This isomorphism converts the original quadratures into elliptic integrals and allows the bifurcation diagram of the spherical problem to be analyzed in terms of the corresponding ones of the planar systems. The dynamics along the orbits in the different regimes for the problem in S2 is expressed in terms of Jacobi elliptic functions.

Regular and Chaotic Dynamics. 2017;22(5):520-542
pages 520-542 views

Darboux polynomials, balances and Painlevé property

Llibre J., Valls C.

Аннотация

For a given polynomial differential system we provide different necessary conditions for the existence of Darboux polynomials using the balances of the system and the Painlevé property. As far as we know, these are the first results which relate the Darboux theory of integrability, first, to the Painlevé property and, second, to the Kovalevskaya exponents. The relation of these last two notions to the general integrability has been intensively studied over these last years.

Regular and Chaotic Dynamics. 2017;22(5):543-550
pages 543-550 views

A family of models with blue sky catastrophes of different classes

Kuptsov P., Kuznetsov S., Stankevich N.

Аннотация

A generalized model with bifurcations associated with blue sky catastrophes is introduced. Depending on an integer index m, different kinds of attractors arise, including those associated with quasi-periodic oscillations and with hyperbolic chaos. Verification of the hyperbolicity is provided based on statistical analysis of intersection angles of stable and unstable manifolds.

Regular and Chaotic Dynamics. 2017;22(5):551-565
pages 551-565 views

Equilibrium for a combinatorial Ricci flow with generalized weights on a tetrahedron

Pepa R., Popelensky T.

Аннотация

Chow and Lou [2] showed in 2003 that under certain conditions the combinatorial analogue of the Hamilton Ricci flow on surfaces converges to Thruston’s circle packing metric of constant curvature. The combinatorial setting includes weights defined for edges of a triangulation. A crucial assumption in [2] was that the weights are nonnegative. We have recently shown that the same statement on convergence can be proved under weaker conditions: some weights can be negative and should satisfy certain inequalities. In this note we show that there are some restrictions for weakening the conditions. Namely, we show that in some situations the combinatorial Ricci flow has no equilibrium or has several points of equilibrium and, in particular, the convergence theorem is no longer valid.

Regular and Chaotic Dynamics. 2017;22(5):566-578
pages 566-578 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».