Equilibrium for a combinatorial Ricci flow with generalized weights on a tetrahedron


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chow and Lou [2] showed in 2003 that under certain conditions the combinatorial analogue of the Hamilton Ricci flow on surfaces converges to Thruston’s circle packing metric of constant curvature. The combinatorial setting includes weights defined for edges of a triangulation. A crucial assumption in [2] was that the weights are nonnegative. We have recently shown that the same statement on convergence can be proved under weaker conditions: some weights can be negative and should satisfy certain inequalities. In this note we show that there are some restrictions for weakening the conditions. Namely, we show that in some situations the combinatorial Ricci flow has no equilibrium or has several points of equilibrium and, in particular, the convergence theorem is no longer valid.

About the authors

Ruslan Yu. Pepa

Moscow State University, Faculty of Mechanics and Mathematics

Author for correspondence.
Email: pepa@physics.msu.ru
Russian Federation, Leninskie Gory 1, Moscow, 119991

Theodore Yu. Popelensky

Moscow State University, Faculty of Mechanics and Mathematics

Email: pepa@physics.msu.ru
Russian Federation, Leninskie Gory 1, Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.