A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The goal of the paper is to explain why any left-invariant Hamiltonian system on (the cotangent bundle of) a 3-dimensonal Lie group G is Liouville integrable. We derive this property from the fact that the coadjoint orbits of G are two-dimensional so that the integrability of left-invariant systems is a common property of all such groups regardless their dimension.

We also give normal forms for left-invariant Riemannian and sub-Riemannian metrics on 3-dimensional Lie groups focusing on the case of solvable groups, as the cases of SO(3) and SL(2) have been already extensively studied. Our description is explicit and is given in global coordinates on G which allows one to easily obtain parametric equations of geodesics in quadratures.

Sobre autores

Alexey Bolsinov

School of Mathematics; Faculty of Mechanics and Mathematics

Autor responsável pela correspondência
Email: A.Bolsinov@lboro.ac.uk
Reino Unido da Grã-Bretanha e Irlanda do Norte, Loughborough, Leicestershire, LE11 3TU; Moscow, 11992

Jinrong Bao

School of Mathematics

Autor responsável pela correspondência
Email: J.Bao@lboro.ac.uk
Reino Unido da Grã-Bretanha e Irlanda do Norte, Loughborough, Leicestershire, LE11 3TU

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019